锂离子电池负极材料及研究.docx

上传人:王** 文档编号:1754333 上传时间:2024-12-27 格式:DOCX 页数:7 大小:17.21KB
下载 相关 举报
锂离子电池负极材料及研究.docx_第1页
第1页 / 共7页
锂离子电池负极材料及研究.docx_第2页
第2页 / 共7页
锂离子电池负极材料及研究.docx_第3页
第3页 / 共7页
锂离子电池负极材料及研究.docx_第4页
第4页 / 共7页
锂离子电池负极材料及研究.docx_第5页
第5页 / 共7页
锂离子电池负极材料及研究.docx_第6页
第6页 / 共7页
锂离子电池负极材料及研究.docx_第7页
第7页 / 共7页
亲,该文档总共7页,全部预览完了,如果喜欢就下载吧!
资源描述

《锂离子电池负极材料及研究.docx》由会员分享,可在线阅读,更多相关《锂离子电池负极材料及研究.docx(7页珍藏版)》请在优知文库上搜索。

1、锂离子电池负极材料及研究锂离子电池的负极是由负极活性物质碳材料或非碳材料、粘合剂和添加剂混合制成糊状胶合剂均匀涂抹在铜箔两侧,经干燥、滚压而成。锂离子电池能否成功地制成,关键在于能否制备出可逆地脱/嵌锂离子的负极材料。选择一种好的负极材料应遵循以下原则:比能量高:相对锂电极的电极电位低;充放电反应可逆性好;与电解液和粘结剂的兼容性好;比表面积小(10m2g),真密度高。2.0gcm3);嵌锂过程中尺寸和机械稳定性好;资源丰富,价格低廉;在空气中稳定、无毒副作用。目前,已实际用于锂离子电池的负极材料一般都是碳素材料,如石墨、软碳(如焦炭等)、硬碳等。正在探索的负极材料有氮化物、PAS.锡基氧化物

2、、锡合金、纳米负极材料,,以及其他的一些金属间化合物等。文堂将已实用的碳素材料和正在探索的非碳材料的研究现状作箍要介绍。1、碳负极材料1.K石墨石墨材料导电性好,结晶度较高,具有良好的层状结构,适合锂的嵌入-脱嵌,形成锂-石墨层间化合物1.i-GIC,充放电比容量可达300mhg以上,充放电效率在90%以上,不可逆容量低于50mAhg。锂在石墨中脱嵌反应发生在00.25V左右(vs.1.i+1.i),具有良好的充放电电位平台,可与提供锂源的正极材料1.iC002,1.iNio2,1.iMn204等匹配,组成的电池平均输出电压高,是目前锂离子电池应用最多的负极材料。石器包括人工石墨和天然石墨两大

3、类。人工石墨是将易石墨化炭(如沥青焦炭)在N2气氛中于19002800C经高温石黑化处理制得。常见人工石墨行中间相碳微球(MCMB)和石墨纤维。天然石墨有无定形石墨和鳞片石墨两种。无定形石墨纯度低,石墨晶面间距(d002)为0.336nm(主要为2H晶面排序结构,即按BB顺序排列,可逆比容量仅260mhg,不可逆比容量在100mAh/g以上。鳞片石墨晶面间距(d002)为0.335nm,主要为2H+3R晶面排序结构,即石墨层按ABAB及ABCABC两种顺序排列。含碳99%以上的鳞片石墨,可逆容量可达300350mAhg,由于石墨间距(d002=0.34nm)小于锂一层间化合物1.i-GIC的晶

4、面层间距(d002=0.37nm),致使在充放电过程中,石墨层间距改变,易造成石墨层剥落、粉化,还会发生锂与有机溶剂共同嵌入石墨层及有机溶剂分解,将影响电池循环性能。因此,人们乂研究了其他的一些石弼材料,如改性石墨和石墨化碳纤维。1.2, 软碳软碳即易石墨化碳,是指在2500C以上的高温下能石墨化的无定形碳。软碳的结晶度(即石墨化度)低,晶粒尺寸小,晶面间距G1.oo2)较大,与电解液的相容性好,但首次充放电的不可逆容量较高,输出电压较低,无明显的充放电平介电位。常见的软碳有石油焦、针状焦、碳纤维、碳微球等。1.3, 硬碳硬碳是指难石墨化碳,是高分子聚合物的热解碳,这类碳在2500C以上的高温

5、也难以石墨化。常见的硬碳有树脂碳(如酚使树脂、环氧树脂、聚糠醇PFA-C等)、有机聚合物热解碳(PVA,PVC,PVDF,PAN等)、碳黑(乙烘黑),其中,聚糠醉树脂碳PFA-C,日本Sony公司已用作锂离子电池负极材料。PFA-C的容量可达400mhg,PFA-C晶面间距(d002)相当,这有利于锂的嵌入而不会引起结构显着膨胀,具有很好的充放电循环性能。另一种硬碳材料是由酚假树脂在800C以下热解得到的非晶体半导体材料多并苯(PAS),其容量高达800mhg,晶面间距为0.37-0.40nm,有利于锂在其中嵌入-脱嵌,循环性能好。2、非碳负极材料2.1、 氮化物锂-碳材料有良好的可充电性能,

6、锂嵌入时体积变化小,安全性能好,是一种良好的负极材料并早已工业应用,但比容量较低(1.iC6为372mAhg),碳材料解体会导致容量衰减。因而,人们便设法寻找一些其他的非碳负极材料以替代碳负极材料,从而解决此问题。近几年来,有许多科研工作者对氮化物体系进行了研究。氮化物的合成最早可追溯至20世纪4050年代,德国的R.Juza等对此展开了合成与结构方面的研究;而20世纪80年代对U3N作为固体电解质的研究较多.1.i3N有很好的离子导电性,但其分解电压很低(0.44V),显然不宜直接作为电极材料。而过渡金属氮化物则有好的化学稳定性和电子导电性,锂一过渡金属氮化物兼有两者性质,应适宜作为电极材料

7、。氮化物体系属反萤石或1.i3N结构的化合物,具有良好的离子导电性Qi3N电导率为10-3S226;CmT),电极电位接近金属锂,有可能用作锂离子电池的负极。目前,人们已研究的氮化物体系材料有属于反萤石结构的1.i7MnN4和1.i3FeN2,和属于1.i3N结构的1.i3-CoxNo1.i7MnN4和1.i3FM2都有良好的可逆性和高的比容量,其主要性能如表1所示。2.2、 金属氧化物碳作为锂离子电池的负极,由于在有机电解质溶液中碳表面形成能让电子和锂离子自由通过的钝化层,这种钝化层保证了碳电极良好的循环性能。然而,也会引起严重的首次充放电不可逆容量的损失,有时甚至能引起碳电极内部的结构变化

8、和电接触不良。另外,高温下也可能因保护层的分解而导致电池失效或产生安全问题,因此,几乎在研究碳负极的同时,寻找电位与1.i+1.i电对相近的其他负极材料的工作一直受到重视,如目前主要研究的SnO、Wo2、MOO2、Vo2、TiO2、1.iXFe203、1.i4Mn2012.1.i4Ti5012等,而其中的SnO材料更是研究中的重点。这是由于锡基氧化物储锂材料有容量密度较高、清洁无污染、原料来源广泛、价格便宜等优点。1997年,Yoshio1.dota等报道了非晶态氧化亚锡基储锂材料,,其可逆放电容量达到600mhgT,嵌脱锂电位均较低,电极结构稳定,循环性能较好。Nam等用电子束沉积Inm厚的

9、SnO作为薄膜锂离子电池的负极材料,经充放电100次显示容量超出300mhg-1.SCNam等用化学气相沉积法制备出结晶态Sn02薄膜,经循环伏安试验表明,在第1次循环中存在不可逆容量,认为是无定形1.i20和金属锡的生成引起的,在以后的循环中,金属锡作为可逆电极,容量达到50OmAhg-1.,并表现出良好的循环性能。2.3、 金属间化合物锂与金属轨化物的电极反应与锂在碳材料中嵌人-脱出反应不同,前者是1.i与其他金属的合金化和去合金化过程,以金属氧化物为负极时,充电过程首次形成的1.i20在负极中可起结构支撑体作用,但又存在较大的不可逆容量。所以,为了降低电极的不可逆容量,乂能保持负极结构的

10、稳定,可以采用金属间化合物来作为锂离子电池的负极。但也应注意到,1.i-M合金的可逆生成与分解伴随着H大的体积变化,引起合金分裂。而解决的方法,一是制备颗粒极细的活性材料,使之不能形成大的原子簇,其二是使用滑陛或非活性的熨合合金。其中不与1.i反应的情性金属作为基体与导电成分容纳合金组分。在这方面,前人已作了大量的研究。MaoOu等4-6合成了Sn-Fe-I粉末;M.M.Thackeray及D.1.archer等研究了Cu-Sn合金的储锂性质;J.0.Besenhard用固相法合成了多晶Sn-Sb合金,用电解法合成了纳米晶形Sn-Sb合金;J.Yangt、李泓等人在水溶液中分别以NaBH4和Z

11、n粉作还原剂,制得纳米Sn-Sb合金;C.M.Ehri1.ich等以MM法合成了Sn-Ni合金。Fang1.等研究了非晶形的Sn-Ca合金。结果发现,这些合金的初始储锂量都较大,但循环性能都不甚理想。要获得较好的循环性能,则其容量就要降低较多(20OmAh/g左右),且循环区间较为狭窄,使应用受到一定限制。Hiroki1.S等人用机械合金法(MA)合成Mg20Ce发现25h时MA结晶度为90乐首次容量为320mhgo100h时MA结晶度近似为0,首次容量为25mhg,但循环性能好。HansuK等研究了Mg-Si合金,发现Mg2Si作负极容量约为1370mAhg,电压曲线平坦,但由于大的体积变化

12、导致电极的脱落。HansuK等人还研究了Mg-N合金,发现Mg75N25在室温下与1.i反应,循环性较纯Mg大大改善。Cao.G.S等通过真空熔炼法制备Zn4Sb3(-C7),首次容量为58ImAhg10次循环后容量为402mhgoHuang.S.M等制备SiAg合金。其中经50h磨的SiAg电极显示较好的循环性和较小的容量损失,在超过50次循环后,可逆容量为280mAhgoZhang1.T等研制出CoFe3Sb1.2,首次可逆容量为490mhg,在10次循环后,可逆容量仍高于24OmAhg而对A1.的有关研究,近年来也有不少报道。根据A1.-1.i二元相图可知,A1.和1.i可以形成3种可能

13、的金属间化合物A1.1.i、A121.i3和A141.i9所以,A1.电极的理论最大容锂值是平均每个灿原子吸收2.25个1.i原子,也就是对应着富1.i相A1.41.i9,其理论比容量为2234mAhg,远远高于石墨的理论比容量372mhgo但以纯A1.作负极时,同样存在容量损失大且循环性能差的问题,Hamon等认为纯A1.作为锂离子电池负极具有高于1000mAhg的比容量,是由于锂离子在嵌入、脱出的过程中与A1.形成了非晶态的U-A1.合金。而其较差的循环性则是由于A1.电极在充放电循环过程中所产生的巨大体积变化而造成的。同时,Hamon等人也发现,A1.箔试样越薄,经充放电循环后,电极的体

14、积变化越小,从而其循环性也越好。这也证实了要解决1.i-M合金在可逆生成与分解时所伴随的H大体积变化而导致电极循环性较差的问题,我们可以制备颗粒极细的活性材料或超薄的薄膜材料。另外,我们也可以采用在能与1.i反应的单质金属中添加惰性金属元素制备一些活性或非活性的熨合合金以解决此问题。MaChiI1.等21-22为改善A1.电极的循环性能,可以在A1.电极中添加一些溶于A1.的或者可以和A1.形成金属间化合物的金属元素,例如Ni、Cu、Mg等,以改善1.i在嵌入负极过程中的扩散速度,从而提高A1.电极的循环性能。虽然在AI电极中添加其它的金属元素会导致其比容量和能量密度的减少,但由此带来的循环性

15、能的提高却可以弥补此不足。因此,A1.基金属间化合物作为锂离子电池负极材料具有广阔的发展前景。3、结论近年来对锂离子电池负极材料的实用化研究工作基本上围绕着如何提高质量比容量与体积比容量、首次充放电效率、循环性能及降低成本这几方面展开。石墨负极材料已成功商品化,但还有一些难以克服的弱点。这是因为碳负极在有机电解液中会形成钝化层(SE1.层),该层虽可传递电子和锂离子,但会引起初始容量的不可逆损失;而且碳电极的电位与金属锂的电位很接近,当电池过充电时,碳电极表面易析出金属锂,从而可能会形成锂枝晶而引起短路:其次,在高温下,碳负极上的保护层可能分解而导致电池着火;另外,碳电极的性能受制备工艺的影响

16、很大。鉴于以上情况,寻找性能更为良好的非碳负极材料仍是锂离子电池研窕的重要课题。近年来,有很多研究者都报告了他们研究非碳负极材料所取得的成果,尤其在有关金屈间化合物方面。他们的研究结果表明,金属基化合物相对于纯金属负极材料来说,比容量虽有少量的降低,但循环性能却有明显的改善。其原因是由于在活性金属中添加其它金属元素后,能显着地减少该金属负极在循环过程中的体积变化,并且引入的其它的惰性金属还可作为骨架材料承载部分成分。就目前来说,金属化合物的锂化研究主要集中在Sn基金属间化合物。这是由于Sn能与1.1.反应形成多种不同的金属间化合物,而且它们的嵌锂容量都比较高,因而Sn基金属间化合物不但可达到好的循环性能,并且比容量也不会下降很多。A1.也能形成多种金属间化合物,但目前研究相对较少。

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 行业资料 > 能源与动力工程

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!