《直流稳定电源电路设计.docx》由会员分享,可在线阅读,更多相关《直流稳定电源电路设计.docx(10页珍藏版)》请在优知文库上搜索。
1、直流稳压电源设计摘要21世纪的我们正在处于蓬勃开展的信息时代,在此,越来越多的电气、电子设备涌现在市场的各个角落,于是必不可少的能源供应部件需求日益增加,而且对电源的功能、稳定性等各项指标也提出了更高的要求。对电源的研究和开发已经成为新技术、新设备开发的重要环节,在推动科技开展中起着重要作用。本实验设计有三个电路模块构成:稳压电源、稳流电源、DC-DC变换器。一律采用仿真技术设计调试。依上述顺序,每个模块的输入即为前一模块的输出,而稳压电源的输入为市电220v50Hzo其中稳定电源的设计要满足在输入电压220V、50Hz、电压变化范围+15%-一20%条件下.输出电压可调范围为+9V+12V,
2、最大输出电流为1.5A,电压调整率W0.2%(输入电压220V变化范围+15%20%下,空载到满载),负载调整率Wl%(最低输入电压下,满载),纹波电压(峰-峰值)5mV(最低输入电压下,满载),效率240%输出电压9V、输入电压220V下,满载),具有过流及短路保护功能。电流设计要满足在输入电压固定为+12V的条件下,输出电流:420mA可调,负载调整率WK输入电压+12V、负载电阻由200Q300。变化时,输出电流为20mA时的相对变化率)。DC-DC变换器设计要求要满足在输入电压为+9V+12V条件下,输出电压为+100V,输出电流为IOnIA,电压调整率W1%(输入电压变化范围+9V+
3、12V),负载调整率WK(输入电压+12V下,空载到满载),纹波电压峰-峰值)100mV(输入电压+9V下,满载)。关键词:稳压电源电路设计仿真调试数据整理目录1、原理电路的设计21.I直流稳压电源电路设计21.2 直流稳流电源电路设计5DODC转换电路设计81.4电路图与主要工作原理101.5主要参数的选择与计算102、仿真、调试过程112.1电路实物的安装与调试112.2DC-DC转换器的仿真与参数分122.3针对问题的调试133、数据整理及最终分析及遇到的问题144、元器件清单165、主要参考文献171、原理电路的设计1.1 直流稳压电源电路设计在本设计中电路都是采用模块设计思想.因此,
4、对电路进展分析、论证都以模块来进展的。1.1.1 可行的直流稳压电源电路设计方案经过对课本的学习,以及从各种书本与网络上获取的信息,我从中归结了以下几种设计思路:1.1.1.1 采用单级开关电源,由220V交流整流后,经开关电源稳压输出.但此方案所产生的直流电压纹波大,在以后的几级电路中很难加以抑制,很有可能造成设计的失败和超出技术指标参数。1.1.1.2 串联型反响式稳压电路参考教材从滤波电路输出后,直接进入线性稳压电路如下1.1所示。线性稳压区域为一个串联型反响式稳压电路,又可分为基准电压、比较放大器、调整管、取样电路四局部。线性稳压电路输出值可调,为9-12V直流稳压输出.这中方案的优点
5、是:电路简单,容易调试。图1.11.1.1.3 在第二个方案的根基上加上DC-DC变换器(即在线性稳压电路前端参加),采用脉宽调制(PWM)技术,并采用恒压差控制技术,如图1.2所示。图1.21.1.1.4 在这种情况下,由DC-DC变换器来完成从不稳定的直流电压到稳定的直流电压的转变,由于采用脉宽调制技术和恒差控制技术,使得线性稳压电路两端呀差减小,电路消耗大幅度下降,解决了方案二中的效率低的问题.其次,由于使用脉宽调制技术,很容易过流、过热、自动保护恢复此外,还可在DJDC变换器中参加软启动电路,以抑制开关是的“过冲。1.1.1.5 1.M317集成稳压芯片构成的可调式稳压电源用LM317
6、三端集成稳压芯片设计直流稳压源,主要因为它的使用非常简单,仅需两个外接电阻来设置输出电压。此外它的线性调整率和负载调整率也比标准的固定稳压器好。LM117/LM317内置有过载保护、安全区保护等多种保护电路。通常LM117/LM317不需要外接电容,除非输入滤波电容到LM117/LM317输入端的连线超过6英寸(约15厘米使用输出电容能改变瞬态响应。调整端使用滤波电容能得到比标准三端稳压器高的多的纹波抑制比。1.M317三端集成稳压芯片设计直流稳压源电路图1.3:图1.31.1.2 最终决定的直流稳压电源电路设计方案由于方案1所产生的直流电压纹波大,在以后的几级电路中很难加以抑制,很有可能造成
7、设计的失败和超出技术指标参数,不宜采用。方案3与方案4简单且可行性比较高,但本实验的设计是从稳压源稳流源DC-DC变换器的模块分布设计的,故方案三不采纳。方窠4个人认为实际上是将方窠2的局部设计思路与原件通过LM317集成稳压芯片来实现的,本着学习其内部原理的目的,此次实验设计采用方案2。1.2 直流稳流电源电路设计1.2.1 可行的直流稳流电源电路设计方案1.2.1.1 以以下图1.4由双运放构成的恒流电路图1.4Outl是深反响同相放大器;。ut2接成电压和跟随器组态,它把输出电压反响回输入端.依放大器特性:Up=Ur*R22/(R22+R23)+Uo*R23/(R23+R22)Un=Uo
8、,*R24(R24+R25)Up=Un在设计中,取R22=R23=R24=R25.由以上三式可得Uo,-Uo=Ur,即电路R26上的压降(Uc-Uo)等于控制电压Ur.忽略集成运放的输入偏置电流,那么输出电流为:Io=UrR26这种方案利用运放构成一深反响电路,有效地抑制了外界干扰,使得恒流电源工作稳定性增强,理论上可以到达0.001-0.OOOl之间的稳定度,完全满足设计要求。1.2.1 .2高精度恒压恒流直流稳压电源电路该电路可以实现稳流输出,但毫无疑问的是过于复杂,精度极高,超出题目要求及制作条件,故不予考虑。1.2.1.3 开关电源式高压恒流源电路图研制仪器需要一个能在O到3兆欧姆电阻
9、上产生IMA电流的恒流源,用UC3845结合12V蓄电池设计了一个,变压器采用彩色电视机高压包,其中Ll用漆包线在原高压包磁心上绕24匝,L3借助原来高压包的一个线圈,L2借助高压包的高压局部.L3和LM393构成限压电路,限制输出电压过高,调节RlO可以调节开路输出电压。1.2.1.4 采用的LM317集成三端稳压器,用12V供电,依靠317的2、3两端带隙电压恒定的特点,用R3与RS2的阻值控制输出电流的大小,到达输出稳定可调电流的目的。电路如图1.5:图1.5LM317组成稳流电源电路1.2.1.5 TL431恒流源电路原理图如下所示。该恒流源如与稳压线路配接,可做电流限制器用。恒流值与
10、Vref和外加电阻,即以以下图中的R6于RZ之和有关,因此调整RZ的阻值,可以改变流经负载RI的电流,从而成为可调稳流源。图1.61.2.2 最终决定的直流稳压电源电路设计方案高精度恒压恒流直流稳压电源电路可以实现稳流输出,但毫无疑问的是过于复杂;双运放构成的恒流电路的方案利用运放构成一深反响电路,有效地抑制了外界干扰,使得恒流电源工作稳定性增强,可以很好的满足设计要求;用LM317制作恒流源电路的方案同样简单易行,在性能上也能到达设计要求指标。但是经过综合考虑可行性、简便性、设计目的性与制作时间等各个方面,我最终选择最后一个恒流源方案,即TL431恒流源电路。1.3DC-DC转换电路设计1.
11、3.1 可行的DC-DC转换电路设计方案1.3.1.1 DC-DC转换电路.使用此电路的目的在于最大限度地降低模块低功耗,同时为下一级提供一个稳定直流电压。它的电路如图17所示。图1.7DC-DC电路图DC-DC电路为由核心芯片TL494作控制的单端PWM降压型开关稳压电路.图中R3与C3决定开关电源的开关频率.电阻Rll作为限流保护电阻用。其片内误差放大器(EAl)的同相输入端(脚2)通过5.IK欧姆电阻(R4)接入反响信号,从后级线性稳压电路得到分压.开关管采用PNP型大功率晶体管。IMHz电流型PWMDC/DC变换器的原理框图。电流型控制电路以UC3843为核心,开关频率为1MHz;变换
12、器采用推挽式(3)主电路;同步整流采用功率MOSFET可控整流电路;辅助电流由电阻和12V稳压管组成(也可采用自举电路),为UC3843提供+12V电源;电流采样是取变压器初级串联电阻上的电压(见图中电阻R)。1.3.1.2 集成运算放大器的升压电路不过此电路只能由5V升至30V,达不到设计要求。1.3.1.3 DC-AC-DC转换升压电路这一电路依靠QI、Q2、Q3组成的自激震荡电路,将直流电源输入的电能转化为交流电压,经变压器升压后再恢复为直流。此种电路构造简单,设计合理,且升压范围比较大,能够到达设计要求。缺点在于输出的电压不稳定,有较大波动,而且交流纹波电压比较大。原理图如下:图L81
13、. 3.2最终决定的DC-DC转换电路设计方案经过综合各方面因素,我最终选择了第3个方案,即DC-AC-DC转换升压电路。1.4 电路图与主要工作原理由于时间问题,以上三个模块全部用仿真软件进展仿真与调试。1.4.1 稳压模块工作原理串联型稳压电路利用双极性三极管的CE极间电阻受基极电流控制的特性,构成以双极性三极管稳压电路为核心的串联型稳压电路,通过引入了典电压串联负反响,进一步提高了输出电压的稳定性。而之前的滤波整流电路从50Hz、220V的交流电压中得到直流电压。1.4.2 稳流模块工作原理恒流值与Vref和外加电阻,即原理图5中的R6于RZ之和有关,因此调整RZ的阻值,可以改变流经负载
14、RI的电流,从而成为可调稳流源。1.4.3 3DC-DC转换器模块工作原理依靠第一级的稳定电压输出供电,依靠原理图中的QI、Q2、Q3和R7、R8、C5构成的自激振荡电路,由上一级的直流供电产生一个交流电信号,在经过变压器升压,再度转换为直流信号输出,同时到达升压的目的。在恒定频率的PwM通断中,控制开关通断状态的控制信号是通过一个控制电压Ucon与锯齿波相比较而产生的.控制电压那么是通过偏差(即实际输出电压与其整定值之间的差值)获得的.锯齿波的峰值固定不变,其重复频率就是开关的通断频率。在PWM控制中,这一频率保持不变,频率范围从几千赫到几十万赫.当放大的偏差信号电平高于锯齿波的电平时,比较
15、器输出高电平,这一高电平的控制信号导致开关导通,否那么,开关处于关断状态.当后级反响电压高于TL494的基准电压5V时,片内误差放大器EAl输出电压增加,将导致外接晶体管T和TL494内部Tl、T2管的导通时间变短,使输出电压下降到与基准电压基本相等,从而维持输出电压稳定,否那么结果相反。1.5 主要参数的选择与计算串联型负反响式稳压电路的计算公式如下:输出电压与调整管Vce的关系:Vo=Vi-Vce=9V12V输出电压与分压电阻和稳流管的关系:(Rl+R2+R3)R2+R3*VzVo(Rl+R2+R3)R3*Vz通过计算,最终选择Rl=4k欧,R2=2k欧,R3=6k欧同时稳压管选择1N5233B,其额定电流为76mA,稳定电压为6V调整管的功耗较大,应选择大功率管BCN72运用较大的4700uf的电容和较小的0.Oluf的电容同时滤除高频与低频的纹波。输出端用一8欧的电阻与负载串联,从而起到控制最大电流为1.5A的作用2、仿真、调试过程由于时间有限,所设计的三个模块应用MULTlSlM进展仿真。2.1直流稳压电源的仿真电路图及结果:仿真电路如2.1所示:V110最大2.2稳流电330 V 50 Hz嗔R412仿真电路如图2.2第电F可谓范围满足要求。可调最大电流Imax=24.