《第1章绪论.ppt》由会员分享,可在线阅读,更多相关《第1章绪论.ppt(84页珍藏版)》请在优知文库上搜索。
1、第一章 绪 论 第一章 绪 论 1.1 雷达的任务雷达的任务 1.2 雷达的基本组成雷达的基本组成 1.3 雷达的工作频率雷达的工作频率 1.4 雷达的应用和发展雷达的应用和发展 1.5 电子战与军用雷达的发展电子战与军用雷达的发展 第一章 绪 论 1.1 雷雷 达达 的的 任任 务务 1.1.1 雷达回波中的可用信息雷达回波中的可用信息 当雷达探测到目标后,就要从目标回波中提取有关信息:可对目标的距离和空间角度定位,目标位置的变化率可由其距离和角度随时间变化的规律中得到,并由此建立对目标跟踪;雷达的测量如果能在一维或多维上有足够的分辨力,则可得到目标尺寸和形状的信息;采用不同的极化,可测量目
2、标形状的对称性。原理上,雷达还可测定目标的表面粗糙度及介电特性等。第一章 绪 论 目标在空间、陆地或海面上的位置,可以用多种坐标系来表示。最常见的是直角坐标系,即空间任一点目标P的位置可用x、y、z三个坐标值来决定。在雷达应用中,测定目标坐标常采用极(球)坐标系统,如图1.1所示。图中,空间任一目标P所在位置可用下列三个坐标确定:(1)目标的斜距R:雷达到目标的直线距离OP;(2)方位角:目标斜距R在水平面上的投影OB与某一起始方向(正北、正南或其它参考方向)在水平面上的夹角。第一章 绪 论 图1.1 用极(球)坐标系统表示目标位置目标PHRBDaO正北雷达第一章 绪 论 (3)仰角:斜距R与
3、它在水平面上的投影OB在铅垂面上的夹角,有时也称为倾角或高低角。如需要知道目标的高度和水平距离,那么利用圆柱坐标系统就比较方便。在这种系统中,目标的位置由以下三个坐标来确定:水平距离D,方位角,高度H。这两种坐标系统之间的关系如下:D=R cos,H=Rsin,=上述这些关系仅在目标的距离不太远时是正确的。当距离较远时,由于地面的弯曲,必须作适当的修改。第一章 绪 论 图1-2 雷达的原理及其基本组成 目标发射机接收机显示器发射的电磁波接收的电磁波信号处理机天线收发转换开关噪声R第一章 绪 论 由雷达发射机产生的电磁能,经收发开关后传输给天线,再由天线将此电磁能定向辐射于大气中。电磁能在大气中
4、以光速(约3108m/s)传播,如果目标恰好位于定向天线的波束内,则它将要截取一部分电磁能。目标将被截取的电磁能向各方向散射,其中部分散射的能量朝向雷达接收方向。雷达天线搜集到这部分散射的电磁波后,就经传输线和收发开关馈给接收机。接收机将这微弱信号放大并经信号处理后即可获取所需信息,并将结果送至终端显示。第一章 绪 论 1.目标斜距的测量目标斜距的测量 雷达工作时,发射机经天线向空间发射一串重复周期一定的高频脉冲。如果在电磁波传播的途径上有目标存在,那么雷达就可以接收到由目标反射回来的回波。由于回波信号往返于雷达与目标之间,它将滞后于发射脉冲一个时间tr,如图1.3所示。我们知道电磁波的能量是
5、以光速传播的,设目标的距离为R,则传播的距离等于光速乘上时间间隔,即 2R=ctr 或 2rctR 第一章 绪 论 式中,R为目标到雷达站的单程距离,单位为m;tr为电磁波往返于目标与雷达之间的时间间隔,单位为s;c为光速,c=3108m/s。由于电磁波传播的速度很快,雷达技术常用的时间单位为s,回波脉冲滞后于发射脉冲为一个微秒时,所对应的目标斜距离R为 kmmtcRr15.01502 能测量目标距离是雷达的一个突出优点,测距的精度和分辨力与发射信号带宽(或处理后的脉冲宽度)有关。脉冲越窄,性能越好。第一章 绪 论 图1.3 雷达测距发射脉冲回波噪声trtrtt第一章 绪 论 2.目标角位置的
6、测量目标角位置的测量 目标角位置指方位角或仰角,在雷达技术中测量这两个角位置基本上都是利用天线的方向性来实现的。雷达天线将电磁能量汇集在窄波束内,当天线波束轴对准目标时,回波信号最强,如图1.4实线所示。当目标偏离天线波束轴时回波信号减弱,如图上虚线所示。根据接收回波最强时的天线波束指向,就可确定目标的方向,这就是角坐标测量的基本原理。天线波束指向实际上也是辐射波前的方向。第一章 绪 论 图1.4 角坐标测量 目标O第一章 绪 论 3.相对速度的测量相对速度的测量 有些雷达除确定目标的位置外,还需测定运动目标的相对速度,例如测量飞机或导弹飞行时的速度。当目标与雷达站之间存在相对速度时,接收到回
7、波信号的载频相对于发射信号的载频产生一个频移,这个频移在物理学上称为多卜勒频移,它的数值为 rdvf2式中,fd为多卜勒频移,单位为Hz;vr为雷达与目标之间的径向速度,单位为m/s;为载波波长,单位为m。第一章 绪 论 当目标向着雷达站运动时,vr0,回波载频提高;反之vr 0,回波载频降低。雷达只要能够测量出回波信号的多卜勒频移fd,就可以确定目标与雷达站之间的相对速度。径向速度也可以用距离的变化率来求得,此时精度不高但不会产生模糊。无论是用距离变化率或用多卜勒频移来测量速度,都需要时间。观测时间愈长,则速度测量精度愈高。多卜勒频移除用作测速外,更广泛的是应用于动目标显示(MTI)、脉冲多
8、卜勒(PD)等雷达中,以区分运动目标回波和杂波。第一章 绪 论 4.目标尺寸和形状目标尺寸和形状 如果雷达测量具有足够高的分辨力,就可以提供目标尺寸的测量。由于许多目标的尺寸在数十米量级,因而分辨能力应为数米或更小。目前雷达的分辨力在距离维已能达到,但在通常作用距离下切向距离(RQ)维的分辨力还远达不到,增加天线的实际孔径来解决此问题是不现实的。然而当雷达和目标的各个部分有相对运动时,就可以利用多卜勒频率域的分辨力来获得切向距离维的分辨力。例如,装于飞机和宇宙飞船上的SAR(综合孔径)雷达,与目标的相对运动是由雷达的运动产生的。高分辨力雷达可以获得目标在距离和切向距离方向的轮廓(雷达成像)。第
9、一章 绪 论 此外,比较目标对不同极化波(例如正交极化等)的散射场,就可以提供目标形状不对称性的量度。复杂目标的回波振幅随着时间会变化,例如,螺旋桨的转动和喷气发动机的转动将使回波振幅的调制各具特点,可经过谱分析检测到。这些信息为目标识别提供了相应的基础。第一章 绪 论 1.1.2 雷达探测能力雷达探测能力基本雷达方程基本雷达方程 设雷达发射机功率为Pt,当用各向均匀辐射的天线发射时,距雷达R远处任一点的功率密度等于功率被假想的球面积4R2所除,即 1S214 RPSt实际雷达总是使用定向天线将发射机功率集中辐射于某些方向上。天线增益G用来表示相对于各向同性天线,实际天线在辐射方向上功率增加的
10、倍数。因此当发射天线增益为G时,距雷达R处目标所照射到的功率密度为 214 RGPSt第一章 绪 论 目标截获了一部分照射功率并将它们重新辐射于不同的方向。用雷达截面积来表示被目标截获入射功率后再次辐射回雷达处功率的大小,或用下式表示在雷达处的回波信号功率密度:22212444RRGPRSSt的大小随具体目标而异,它可以表示目标被雷达“看见”的尺寸。雷达接收天线只收集了回波功率的一部分,设天线的有效接收面积为Ae,则雷达收到的回波功率Pr为 422)4(RGAPSAPeter第一章 绪 论 当接收到的回波功率Pr等于最小可检测信号Smin时,雷达达到其最大作用距离Rmax,超过这个距离后,就不
11、能有效地检测到目标。4/1min21max)4(SGAPRe第一章 绪 论 1.2 雷达的基本组成雷达的基本组成 图1.5 脉冲雷达基本组成框图 调制器电源收发开关高频和混频激励器中放同步器信号处理高放激励和同步微波显示器底座和伺服发射机操作员天线接收机第一章 绪 论 1.3 雷达的工作频率雷达的工作频率 按照雷达的工作原理,不论发射波的频率如何,只要是通过辐射电磁能量和利用从目标反射回来的回波,以便对目标探测和定位,都属于雷达系统工作的范畴。常用的雷达工作频率范围为22035 000MHz(220MHz35GHz),实际上各类雷达工作的频率在两头都超出了上述范围。例如天波超视距(OTH)雷达
12、的工作频率为4MHz或5MHz,而地波超视距的工作频率则低到2MHz。在频谱的另一端,毫米波雷达可以工作到94 GHz,激光(Laser)雷达工作于更高的频率。工作频率不同的雷达在工程实现时差别很大。第一章 绪 论 雷达的工作频率和整个电磁波频谱示于图1.6,实际上绝大部分雷达工作于200 MHz至10 000MHz频段。由于70年代中制成能产生毫米波的大功率管,毫米波雷达已获得试制和应用。目前在雷达技术领域里常用频段的名称,用L、S、C、X等英文字母来命名。这是在第二次世界大战中一些国家为了保密而采用的,以后就一直延用下来,我国也经常采用。第一章 绪 论 图1.6 雷达频率和电磁波频谱 甚低
13、频(超长波)低频(长波)中频(中波)高频(短波)甚高频(超短波)特高频(分米波)超高频(厘米波)极高频(毫米波)亚毫米波100 km10 km1 km100 m10 m1 m10 cm1 cm1 mm0.1 mm雷达频率广播段红外线音频视频微波段频率3 kHz30 kHz300 kHz3 MHz30 MHz300 MHz3 GHz30 GHz300 GHz3000 GHz波长第一章 绪 论 表表1.1 雷达频段和对应的频率雷达频段和对应的频率 第一章 绪 论 22 cm为中心的2025 cm(S代表10 cm为中心,相应地,C代表5cm,X代表3 cm,Ku代表2.2 cm,Ka代表8 mm等
14、)。表中还列出国际电信联盟分配给雷达的具体波段,例如,L波段包括的频率范围应是1000 MHz到2000MHz,而L波段雷达的工作频率却被约束在1215MHz到1400MHz的范围。第一章 绪 论 1.4 雷达的应用和发展雷达的应用和发展 1.4.1 应用情况应用情况 军用雷达按战术来分可有下列主要类型:#;1)预警雷达(超远程雷达)它的主要任务是发现洲际导弹,以便及早发出警报。它的特点是作用距离远达数千公里,至于测定坐标的精确度和分辨力是次要的。目前应用预警雷达不但能发现导弹,而且可用以发现洲际战略轰炸机。第一章 绪 论 2)搜索和警戒雷达 其任务是发现飞机,一般作用距离在400 km以上,
15、有的可达600 km。对于测定坐标的精确度、分辨力要求不高。对于担当保卫重点城市或建筑物任务的中程警戒雷达要求有方位360的搜索空城。3)引导指挥雷达(监视雷达)这种雷达用于对歼击机的引导和指挥作战,民用的机场调度雷达亦属这一类。其特殊要求是:(1)对多批次目标能同时检测;(2)测定目标的三个坐标,要求测量目标的精确度和分辨力较高,特别是目标间的相对位置数据的精度要求较高。第一章 绪 论 4)火控雷达 其任务是控制火炮(或地空导弹)对空中目标进行瞄准攻击,因此要求它能够连续而准确地测定目标的坐标,并迅速地将射击数据传递给火炮(或地空导弹)。这类雷达的作用距离较小,一般只有几十公里,但测量的精度
16、要求很高。5)制导雷达 它和火控雷达同属精密跟踪雷达,不同的是制导雷达对付的是飞机和导弹,在测定它们的运动轨迹的同时,再控制导弹去攻击目标。制导雷达要求能同时跟踪多个目标,并对分辨力要求较高。这类雷达天线的扫描方式往往有其特点,并随制导体制而异。第一章 绪 论 6)战场监视雷达 这类雷达用于发现坦克、军用车辆、人和其它在战场上的运动目标。7)机载雷达 这类雷达除机载预警雷达外,主要有下列数种类型:(1)机载截击雷达。当歼击机按照地面指挥所命令,接近敌机并进入有利空域时,就利用装在机上的截击雷达,准确地测量敌机的位置,以便进行攻击。它要求测量目标的精确度和分辨率高。第一章 绪 论 (2)机载护尾雷达。它用来发现和指示机尾后面一定距离内有无敌机。这种雷达结构比较简单,不要求测定目标的准确位置,作用距离也不远。(3)机载导航雷达。它装在飞机或舰船上,用以显示地面或港湾图像,以便在黑夜和大雨、浓雾情况下,飞机和舰船能正确航行。这种雷达要求分辨力较高。第一章 绪 论 (4)机载火控雷达。20世纪70年代后的战斗机上火控系统的雷达往往是多功能的。它能空对空搜索和截获目标,空对空制导导弹,空对空精密