镧系元素的性质.ppt

上传人:王** 文档编号:503154 上传时间:2023-11-13 格式:PPT 页数:38 大小:938.50KB
下载 相关 举报
镧系元素的性质.ppt_第1页
第1页 / 共38页
镧系元素的性质.ppt_第2页
第2页 / 共38页
镧系元素的性质.ppt_第3页
第3页 / 共38页
镧系元素的性质.ppt_第4页
第4页 / 共38页
镧系元素的性质.ppt_第5页
第5页 / 共38页
镧系元素的性质.ppt_第6页
第6页 / 共38页
镧系元素的性质.ppt_第7页
第7页 / 共38页
镧系元素的性质.ppt_第8页
第8页 / 共38页
镧系元素的性质.ppt_第9页
第9页 / 共38页
镧系元素的性质.ppt_第10页
第10页 / 共38页
亲,该文档总共38页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《镧系元素的性质.ppt》由会员分享,可在线阅读,更多相关《镧系元素的性质.ppt(38页珍藏版)》请在优知文库上搜索。

1、镧系元素的性质镧系元素的性质 及其及其 性质变化规律性性质变化规律性镧系元素在地壳中的丰度和奇偶变化镧系元素在地壳中的丰度和奇偶变化镧系元素的价电子层结构镧系元素的价电子层结构原子半径和离子半径原子半径和离子半径Ln3离子的碱度离子的碱度氧化态氧化态镧系元素化合物的一些热力学性质镧系元素化合物的一些热力学性质镧系元素的光学性质镧系元素的光学性质镧系元素的磁学性质镧系元素的磁学性质镧系元素的放射性镧系元素的放射性1 镧系元素在地壳中的丰度和奇偶变化镧系元素在地壳中的丰度和奇偶变化是中子,在基态时总以自旋相反配对存在,由于原子序数为偶数的元素能满足这种自旋相反配对的要求,因而能量较低,所以就特别稳

2、定,既然该核特别稳定,那么它在地壳中的丰度就大。稳定的原子核,吸收热中子后仍然很稳定,反之,奇原子序 数的核本身不稳定,吸收热中子后变得更不稳定,所以吸收热中子的数目有限。原子序数是原子核内质子数的代表,偶原子序数的元素意味着核内质子数为偶数。已经知道,核内无论是质子还 左图显示出镧系元素在地壳中的丰度随原子序数的增加而出现奇偶变化的规律:原子序数为偶数的元素,其丰度总是比紧靠它的原子序数为奇数的大。除丰度之外,镧系元素的热中子吸收截面也呈现类似的奇偶变化规律性。奇偶变化奇偶变化 下表列出镧系元素在气态时和在固态时原子的电子层结构。2 镧系元素的价电子层结构镧系元素的价电子层结构 镧系元素气态

3、原子的4f轨道的充填呈现两种构型,即4fn15d16s2和4fn6s2,这两种电子构型的相对能量如图1所示:La、Gd、Lu的构型可以用f0、f7、f14(全空、半满和全满)的洪特规则来解释,但Ce的结构尚不能得到满意的解释,有人认为是接近全空的缓故。其中 La、Ce、Gd、Lu的基态处于4fn15d16s2 时能量较低,而其余元素皆为4fn6s2。这两种电子结构可以用来说明镧系元素化学性质的差异。这些元素在参加化学反应时需要失去价电子,由于4f 轨道被外层电子有效地屏蔽着,且由于E4fE5d,因而在结构为 4fn6s2 的情况下,f 电子要参与反应,必须先得由4f 轨道跃迁到5d 轨道。这样

4、,由于电子构型不同,所需激发能不同,元素的化学活泼性就有了差异。另一方面,激发的结果增加了一个成键电子,成键时可以多释放出一份成键能。对大多数镧系的原子,其成键能大于激发能,从而导致4f 电子向5d 电子跃迁,但少数原子,如Eu和Yb,由于4f 轨道处于半满和全满的稳定状态,要使4f 电子激发必须破坏这种稳定结构,因而所需激发能较大,激发能高于成键能,电子不容易跃迁,使得Eu、Yb两元素在化学反应中往往只以6s2电子参与反应。镧系元素的原子,在固态时的电子构型与气态时的电子构型不尽相同。在固态时,除Eu和Yb仍保持4fn6s2以外,其余原子都为4fn15d16s2的构型。从气态变到固态,其实质

5、是原子间通过金属键的形式结合成为金属晶体。成键倾向于使用低能级轨道。镧系元素气态原子在形成金属键时的成键电子数,除Eu和Yb为2、Ce为3.1外,其余皆为3。所以Eu和Yb只使用6s2成键,气、固态一致,其余元素在固态时减少一个f电子,增加一个d电子。3 原子半径和离子半径原子半径和离子半径 左表示出镧系元素的原子半径、离子半径。随着原子序数依次增加,15个镧系元素的原子半径和离子半径总趋势是减小的,这叫“镧系收缩”。研究表明:镧系收缩90%归因于依次填充的(n2)f电子其屏蔽常数可能略小于1.00(有文献报告为0.98),对核电荷的屏蔽不够完全,使有效核电荷Z*递增,核对电子的引力增大使其更

6、靠近核;而10%来源于相对论性效应,重元素的相对论性收缩较为显著。由于镧系收缩的影响,使第二、三过渡系的Zr和Hf、Nb与Ta、Mo与W三对元素的半径相近,化学性质相似,分离困难。57 La 187.7 106.158 Ce 182.4 103.4 9259 Pr 182.8 101.3 9060 Nd 182.1 99.561 Pm 181.0 97.962 Sm 180.2 111 96.463 Eu 204.2 109 95.064 Gd 180.2 93.865 Tb 178.2 92.3 8466 Dy 177.3 90.867 Ho 176.6 89.468 Er 175.7 88

7、.169 Tm 174.6 94 86.970 Yb 194.0 93 85.871 Lu 173.4 84.8原子 元素序数 符号金属原子 离子半径/pm半径/pm RE2 RE3 RE4 镧系元素的原子半径、离子半径镧系元素的原子半径、离子半径 将镧系元素的原子半径随原子序数的变化作图,如左图所示。一方面,镧系元素原子半径从La的187.7 pm到Lu的173.4 pm,共缩小了14.3 pm,平均每两个相邻元素之间缩小14.3/141 pm。尽管平均相差只有1个pm,但其累积效应(共14 pm)是很显著的。另一方面,原子半径不是单调地减小,而是在Eu和Yb处出现峰和在Ce处出现谷的现象。

8、这被称为“峰谷效应”或“双峰效应”。原子半径原子半径 除原子半径外,原子体积、密度、原子的热膨胀系数、第三电离子能、前三个电离能的总和、原子的电负性、一些化合物的熔点、沸点等也出现这种峰谷效应。由于金属的原子半径与相邻原子之间的电 子云相互重叠(成键作用)程度有关。而Eu和Yb只用少量 d 电子参与成键,成键电子总数为2,其他原子(如Gd、Lu)能使用较多的 d 电子参与成键,成键电子总数为3(Ce为3.1),成键作用的差别造成了原子半径的差别。Eu和Yb的碱土性:Eu和Yb在电子结构上与碱土金属十分相似,这种相似性使得Eu和Yb的物理和化学性能更接近于碱土金属。其原子半径也接近于碱土金属。洪

9、特规则:Eu和Yb的 f 电子数分别为f7和f14,这种半满和全满的状态能量低、屏蔽大、有效核电荷小,导致半径增大。对峰谷效应的解释如下:电子精细结构:据计算,Eu、Gd、Yb、Lu的电子精细结构分别为:Eu 4f75d0.52626s1.21476p0.2591 Gd 4f75d26s1 Yb 4f145d0.26356s1.22516p0.5114 Lu 4f145d1.82356s16p0.1765峰谷效应峰谷效应(双峰效应双峰效应)CeEuYb离子半径 将镧系元素的离子半径随原子序数的变化作图,如左图所示。在上述镧系元素离子半径随原子序数变化的图中一方面可以看到,镧系元素+3价离子从f

10、0 的La3到f14 的Lu3,依次增加4f电子(与原子的电子排布不一样),因而随着原子序数的增加离子的半径依次单调减小(没有峰谷现象),收缩的程度比原子半径更大,由La3的106.1 pm到Lu3的84.8 pm,共缩小了21.3 pm,平均每两个相邻元素间缩小了21.3/141.5 pm。这是镧系元素性质的单向变化单向变化规律。另一方面,离子半径的变化,在具有f7的中点Gd3钆处,微有不连续性,这是由于Gd3具有f7半满稳定结构,屏蔽稍大,半径略有增大之故。这是镧系元素性质的Gd断效应断效应规律。离子半径 除离子半径外,属于镧系元素性质单向变化的还有有效核电荷,标准电极电势,配合物的稳定常

11、数,一些化合物的密度和熔点、溶解度,氢氧化物沉淀的pH值,离子势等同离子状态有关的物理、化学性质。此时镧系元素性质的相似性大于相异性。性质递变是以单调渐变为主。故称为单向变化。单向变化单向变化原子序数原子序数 镧系元素这些由离子制约的性质,其所以呈单向变化是因为离子的电子结构的单向变化。即从La3到Lu3,3价离子的电子构型是4f04f14,由于4f电子对核的屏蔽不完全,使有效核电荷单向增加,核对外面的引力逐渐增加之故。Gd断效应断效应 64Gd位于15个镧系元素所构成的序列的正中央,其3价离子有半充满的f7稳定结构,这种结构的电子屏蔽效应大,有效核电荷相对较小,从而使半径收缩幅度减小,碱度增

12、加,导致配合物稳定常数等性质有所降低,从而出现Gd断的现象。类似的现象还出现在镧系元素的配位化合物的稳定常数中。这种现象被称之为这种现象被称之为Gd断效应。断效应。在镧系元素的离子半径的变化中,在具有f7的中点64Gd3+处微有不连续性,由其相邻离子半径的差值的大小可以看出:Pm3 Sm3 Eu3 Gd3 Tb3 Dy3 r/pm 97.9 96.4 95.0 93.8 92.3 90.8 /pm 1.5 1.4 1.2 1.5 1.5 K稳 rM3+原子序数原子序数64Gd 某种金属离子吸引电子或阴离子的能力被称为该金属离子的“相对碱度”。引力越强,碱度越弱引力越强,碱度越弱。碱度的强弱可用

13、金属离子的离子势(Z/r)来量度,离离子势值越大子势值越大(即半径小,电荷高即半径小,电荷高)则碱度越弱则碱度越弱。对于镧系电荷相同的离子,随着原子序数增加,离子半径减小,离子势逐渐增大,离子的碱度减弱。碱度呈现单向变化单向变化的的规律。利用Ln3离子半径的微小差别,亦即碱度的微小差别,可以对镧系离子进行分离。4 Ln3离子的碱度离子的碱度 如Ln3水解生成 Ln(OH)3沉淀的趋势随原子序数的增加(即碱度减弱)而增加,当加入NaOH时,溶解度最小、碱度最弱的Lu将最先以Lu(OH)3的形式沉淀出来,而溶解度最大,碱度最强的La将最后以La(OH)3沉淀。Ln3离子生成配合物的稳定性多是随离子

14、半径的减小,即碱度减弱而增大的。例如在H型阳离子交换树脂上使Ln3离子的溶液流下,这时Ln3离子将与H离子交换而被吸附在阳离子交换柱上。然后,用螯合剂(如EDTA)在适当的pH和流速下淋洗,此时,半径较小、碱度较弱、能形成较稳定配合物的重镧系离子将从交换柱上最先被淋洗出来。假如条件控制得好,各个Ln3离子可以全部被分离开,至少可以被分成几个组。当这个过程在串联起来的若干个交换柱上进行时(类似于多次分离),其分离效果就更好。总之,镧系离子的分离主要是根据各个离子的碱度的微小差异,利用生成配合物或萃合物的能力上的差别以离子交换或溶剂萃取的方法来进行的,有时还辅以溶解度,或氧化态的差别。如控制pH值

15、使氢氧化物分级沉淀或某些盐类的分级结晶,将Ce3氧化成Ce4,Eu3+还原成Eu2+等来达到分组或分离成单一元素的目的。关于镧系的分离,必须强调指出的是,若能利用Ln3离子与非+3价离子的化合物在性质上的较大差异来分离镧系元素比纯粹利用Ln3离子的碱性的微小差异来分离更为容易,例如:Ce4在HNO3溶液中用磷酸三丁酯萃取时,4价的Ce4比其他3价镧系离子更易被萃取到有机相之中,因而能首先与其他3价镧系离子分离。这当然是因为+4价Ce4的离子势比其余+3价镧系的离子势更大,碱度更弱,更易与OH离子生成氢氧化物沉淀和与磷酸三丁酯生成萃合物而进入有机相之故。Ce4比其他3价Ln3能在较低的pH下生成

16、氢氧化物沉淀。可以看到:镧系元素的特征氧化态是+3。这是由于镧系元素的原子的第一、第二、第三电离能之和不是很大,成键时释放出来的能量足以弥补原子在电离时能量的消耗,因此,他们的+3氧化态都是稳定的。除特征氧化态+3之外,Ce、Tb以及Pr等还可显+4氧化态,Eu、Yb以及Sm等可显+2氧化态。这些显示非3价氧化态的诸元素有规律地分布在La、Gd、Lu附近。这种情况可由原子结构的规律变化得到解释:La3、Gd3、Lu3分别具有4f轨道全空、半满、全满的稳定电子层结构,因而比稳定结构多一个f电子的Ce3和Tb3有可能再多失去1个4f电子而呈现+4氧化态,而比稳定结构少一个f电子的Eu3+和Yb3+有可能少失去一个电子而呈现+2氧化态。显然镧系离子在氧化态变化的周期性规律正是镧系元素电子层排布呈现周期性规律的反映。5 氧化态氧化态下图示出镧系元素氧化态的周期性变化的规律。(1)一些化合物的标准溶解焓呈现三分组效应一些化合物的标准溶解焓呈现三分组效应 如果把镧系元素的氯化物和水合氯化物的标准溶解焓对原子序数作图可以得到三根直线(左图),从而把镧系元素分成了铈组(包括La、Ce、Pr、Nd、Pm

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 工学

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!