《5正切函数的性质、图像的变换含答案.docx》由会员分享,可在线阅读,更多相关《5正切函数的性质、图像的变换含答案.docx(4页珍藏版)》请在优知文库上搜索。
1、5正切函数的性质、图像的变换知识楂理1、函数y=tanx的性质与图象见下表:2.用“图象变换法”作y=Asin(s+9)(A0,0)的图象(1) .0对y=sin(x+9),彳R的图象的影响y=sin(x+)0)的图象可以看作是把正弦曲线y=sinx上全部的点(当0时)或(当0)对y=sin(5+3)的图象的影响函数y=sin(+w)的图象,可以看作是把y=sin(x+9)的图象上全部点的横坐标(当侬1时)或(Ol时)或(当OVA0)或向石(-VO)-y=sinx的图象平移IWl个单位的图象横坐标变为原来的-!-(3O)倍(Jt)纵坐标不变的图象纵坐标变为原来的,4(月0)倍横坐标不变的图象.
2、学问梳理1、小R,且x#E+5Z)R奇函数(E去E+,(2Z)2、(1)向左向右侬(2)、缩短伸长A不变(3) .伸长缩短A倍A,AA-A(4) .y=sin(x+p)y=sin(sx+p)y=Asin(x)一、选择题1 .函数y=3lan(2x+;)的定义域是()A.xx2,A三ZB.小冷一,AZAjrkC.x23,攵ZD.小#呼,kZ2 .函数氏)=tan(x+力的单调递增区间为()A.(hr?A,-WZB.(k,伏+l),ZC.(A-,kGZD.(A-E+,),AZ3 .要得到y=sinM-?)的图象,只要将y=sin的图象()A.向左平移,个单位长度B.向右平移与个单位长度C.向左平移
3、吊个单位长度D.向右平移专个单位长度4 .为得到函数F=COSa+5)的图象,只需将函数F=SinX的图象()A.向左平移/个单位长度B.向右平移点个单位长度0OC.向左平移个单位长度D.向右平移半个单位长度5 .将函数y=sin2x的图象向左平移彳个单位,再向上平移1个单位,所得图象的函数解析式是()A.y=cos2xB.y=lcos2xC.y=l+sin(2x+%D.y=cos2-16 .把函数y=sinx(xR)的图象上全部的点向左平行移动与个单位长度,再把所得图象上全部点的横坐标缩短到原来的T倍(纵坐标不变),得到的图象所表示的函数是()A.y=sin(2x一,),xRB.y=sing
4、+*),xRC.y=sin(2x+1),RD.y=sin(2x+第,xR二、填空题7 .函数y=yjtanx-的定义域是.8 .函数y=3ian(o*+奇的最小正周期是方,则=.9 .函数y=sin2x图象上全部点的横坐标变为原来的2倍,纵坐标不变,所得图象的函数解析式为Kv)=.10 .将函数y=sin(2x+。的图象向左平移看个单位,所得函数的解析式为.三、解答题11 .已知函数/)=sin一2x)(xR),求於)的单调减区间.作业设计1. C2. C3、B4、C5. B将函数y=sin2x的图象向左平移个单位,得到函数y=sin2(x+%即y=sin(2x+T)=cos2x的图象,再向上平移1个单位,所得图象的函数解析式为y=l+cos2x6. C把函数y=sinx的图象上全部的点向左平行移动个单位长度后得到函数),=Sin(x+穹的图象,再把所得图象上全部的点的横坐标缩短到原来的/倍,得到函数y=sin(2x+灯的图象.I7. j,+,ArZ.8. 2解析T=俞=看.g=2.9. sinX10. y=cos2x11. 解由已知函数化为y=-sin(2r-.欲求函数的单调递减区间,只需求),=sin(2x-的单调递增区间.由2&九一52-W22+伏Z),原函数的单调减区间为,一自,履+(ZZ).