概率论与数理统计主要内容小结.docx

上传人:王** 文档编号:1089762 上传时间:2024-03-25 格式:DOCX 页数:9 大小:90.55KB
下载 相关 举报
概率论与数理统计主要内容小结.docx_第1页
第1页 / 共9页
概率论与数理统计主要内容小结.docx_第2页
第2页 / 共9页
概率论与数理统计主要内容小结.docx_第3页
第3页 / 共9页
概率论与数理统计主要内容小结.docx_第4页
第4页 / 共9页
概率论与数理统计主要内容小结.docx_第5页
第5页 / 共9页
概率论与数理统计主要内容小结.docx_第6页
第6页 / 共9页
概率论与数理统计主要内容小结.docx_第7页
第7页 / 共9页
概率论与数理统计主要内容小结.docx_第8页
第8页 / 共9页
概率论与数理统计主要内容小结.docx_第9页
第9页 / 共9页
亲,该文档总共9页,全部预览完了,如果喜欢就下载吧!
资源描述

《概率论与数理统计主要内容小结.docx》由会员分享,可在线阅读,更多相关《概率论与数理统计主要内容小结.docx(9页珍藏版)》请在优知文库上搜索。

1、概率论与数理统计主要内容小结概率局部1、全概率公式与贝叶斯公式全概率公式:其中。,当,纥是空间S的一个划分。贝叶斯公式:P由I公=广幻P(A田)力P(Bj)P(AIBj)其中男,星,8”是空间S的一个划分。2、互不相容与互不相关AB互不相容OAn8=。,P(Af8)二。事件AB互相独立=P(AB)=P(八)(B);两者没有必然联系3、几种常见随机变量概率密度与分布律:两点分布,二项分布,泊松分布,均匀分布,二项分布,指数分布,正态分布。X伙1,P),即二点分布,那么分布律为Px=k=pk0-p)i,k=0,1.X久,p),即二项分布,那么分布律为Px=k=CP1-p)n-k=0,1,.,n.X

2、ie,xw(a,b)X万(,即泊松分布,那么分布律为Px=k=-=0,1,XU(,b),即均匀分布,那么概率密度为f()=b-a0,其它x(。),即指数分布,那么概率密度为F(X)=Je.0,其它1*2XN(4,),即正态分布,那么那么概率密度为/()=-e2,一OOVXO(或g(x)O),那么Y概率密度为:其中,z(y)是g(x)的反函数,且有=ming(-OO),g(+oo),7=maxg(-oo),g(+8).(ii)利用分布函数计算:先求y=g)值域,再在该值域求Y的分布函数那么有4(y)=F(y)常用求导公式5、二维随机变量分布律对于二维连续性随机变量(X,y),其联合概率密度为7(

3、x,y),其联合分布函数为/(x,y),那么F(x,y)=,:/(,V)dvdu,概率密度性质:(i)/(x,y)O,(ii)f(u.v)dvduJ-DOJ-X概率密度f(x,y),求区域概率有P(x,)D=f(x,y)dydx,D边缘分布函数为Fx(x)=JJ:/(,v)dvdu,FX(y)=v)dudv,边缘概率密度为Fx(X)=f(x9y)dy,f(y)=f(x,y)d.J-8J-OC条件分布函数为FXIy(XIy)=L当弋八,KuUI幻=L弊卜匕条件概率密度为rUy)=坐斗,4X(yI幻=需-f(y)fM对于离散情形,设联合分布律为PX=i,Y=yj=Pij边缘概率密度为PX=Xi=Y

4、pij=P-PY=y.=pij=Pjj=Z=I条件概率密度为尸丫=XIX=X=,PX=iY=yj=-L.6、二维随机变量函数的分布设二维随机变量(X,Y)概率密度为f(x,y),分布函数为F(x,y)(i) Z=X+Y,那么Z的概率密度为当X,y相互独立时,fz(Z)=X(Z-y)fr(y)dy=jfx(x)fy(z-x)dx(ii) M=maxX,Y与N=min(X,Y当X,Y相互独立时,Fm(z)=Fx(z)Fy(z)fFN(Z)=I-(I-FX(Z)X1-4(Z)7、数学期望(i)求法:连续随机变量X概率密度为/a),那么E(X)=%。)公;假设y=g(X),那么E(Y)=fg(x)f(

5、x)dx.离散随机变量分布律为Px=pjt,那么E(X)=SZp;假设Y=g(X),那么k=E(X)=g(xk)pk.Jl=I假设有二维的随机变量(X,y),其联合概率密度为/(x,y),假设Y=g(X,Y),那么E(Y)=J:匚g(x,y)f(x,y)dydx.(ii)性质:E(C)=C,E(CX)=CE(X),E(X+Y)=E(X)+E(Y)x,y相互独立,那么有E(Xy)=E(X)(丫).8、方差定义:D(X)=ElX-E(X)2,标准差(均方差):JaX).计算:D(X)=E(X2)-I(X)J2性质:D(C)=0,D(X+C)=D(X),D(CX)=C2D(X).常见分布的数学期望和

6、方差:两点分布:E(X)=P1D(X)=P(I-P).X仇,p),即二项分布,那么E(X)=np,D(X)=np(-p).X粗,即泊松分布,那么E(X)=ZD(X)=ZXU(4,6),即均匀分布,那么E(X)=巴心,D(X)=S.212XE(8),即指数分布,那么E(X)=3D(X)=XN(M,,),即正态分布,那么E(X)=,O(X)=/9、协方差与相关系数定义:协方差:Cov%x,y)=F(x)F(y)=f(x)f(y)=E(X,Y)=E(X)E(Y)F为分布函数,而f为概率密度一般情况下,X,y相互独立=x,y不相关,但反之不成立;特殊情况,当(x,y)N(外,2;。:,犬;夕)时,X,丫相互独立ox,丫不相关并且此时E(X)=,夙丫)=2;。(X)=b(Y)=1px=.Cov(XI)=px2.11、切比雪夫(ChebySheV)不等式:设随机变量X的期望与方差为E(X)=,O(X)=b?,那么对任意正数0,有PX-E(X)e即尸X-4g.进一步有:PX-E(X)1-,BPPX-OM=1,2,,那么当n充分大时,Yn =NXk-E(NXk)/=14n近似N(OJ).定理2(棣莫弗-拉普拉斯定理)设随机变量%,=1,2服从参数为2,p(0p,X+%5-l)nX+-1),X-ta(n-1)Jnyn

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 理学

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!