《膜分离技术详解.docx》由会员分享,可在线阅读,更多相关《膜分离技术详解.docx(11页珍藏版)》请在优知文库上搜索。
1、膜分离技术详解膜分离技术详解中国的膜技术从60年代中期起步研究,长时间在实验室内和中试规模徘徊。从“七五”计划开始,国家科委把膜技术列为国家重大科研项目加以支持,膜技术取得较大进展,特别是改革开放的国策促进了广泛的国际交流,膜技术在国民经济发展中的重要性日益增大,国内膜工业产值也逐渐增加。近10年来,中国的膜技术的总体水平有了很大的进展,但与国际技术先进国家的差距仍然很大。问题主要表现在:生产现代化、产业化程度低,原料不规范,工艺参数未严格控制,产品质量不稳定;膜的品种少,应用范围小。尤其应用的工艺设计、系统成套能力、膜组件水平、相关机电产品等方面,尚未达到国际先进水平,远不能满足国内市场需求
2、,膜技术存在着很大的发展分在膜中传质的选择性差异,对多组分的流体物质进行分离、分级、提纯和富集的方法。1、膜的定义膜是一种起分子级分离过滤作用的介质,当溶液或混和气体与膜接触时,在压力下,或电场作用下,或温差作用下,某些物质可以透过膜,而另些物质则被选择性的拦截,从而使溶液中不同组分,或混和气体的不同组分被分离,这种分离是分子级的分离。膜的定义一种最通用的广义定义是“膜”为两相之间的一个不连续区间。因而膜可为气相、液相和固相,或是他们的组合。简单的说,膜是分隔开两种流体的一个薄的阻挡层。描述膜传递速率的膜性能是膜的渗透性。以常见的超滤过程为例,分离机理主要为筛分:膜表面有微孔,流体流经膜一侧的
3、表面时,部分较小的分子随部分溶剂穿过膜到达另一侧,形成透析液,而大分子则被截留在原来的一侧,形成截留液,从而达到了将大分子溶质与小分子溶质及溶剂分离开的目的。形象地说,膜就像一张筛网,可以拦下大的、透过小的。但这张筛网与众不同的是它的孔径很小,进行的是大小分子的分离。我们只要选择合适孔径的膜,就可以进行所需的分子级分离。2、膜分离技术的定义把上述的膜制成适合工业使用的构型,与驱动设备(压力泵、或电场、或加热器、或真空泵)、阀门、仪表和管道联成设备。在一定的工艺条件下操作,就可以来分离水溶液或混和气体。透过膜的组分被称为透过流分。这种分离技术被称为膜分离技术。3、膜的种类分离膜包括:反渗透膜(O
4、.00010OO1.um),纳滤膜(0.001-0.01m)超滤膜(0.0101.m)微滤膜(0.110um)、电渗析膜、渗透气化膜、液体膜、气体分离膜、电极膜等。他们对应不同的分离机理,不同的设备,有不同的应用对象。膜本身可以由聚合物,或无机材料,或液体制成,其结构可以是均质或非均质的,多孔或无孔的,固体的或液体的,荷电的或中性的。膜的厚度可以薄至IooHm,厚至几毫米。不同的膜具有不同的微观结构和功能,需要用不同的方法制备。制膜方法一直是膜领域的核心研究课题,也是各公司严格保密的核心技术。4、按微观结构分:对称膜、不对称膜、复合膜、多层复合膜等。5、按宏观结构分:平板膜、卷式膜、管式膜、毛
5、细管膜、中空纤维等。无论在实验室或工业规模的生产中,膜都被制成一定形式的组件作为膜分离装置的分离单元。在工业上应用并实现商品化的膜组件主要有平板型、圆管型、螺旋卷型和中空纤维型,相应的膜的几何形状分为平板式、管式、毛细管式和中空纤维式。后三种皆为管状膜,它们的差别主要是直径不同:直径10m的为管式膜;直径在0.5IOmm之间的是毛细管式膜;直径0.5mm的为中空纤维膜。管状膜直径越小则单位体积里的膜面积越大。膜及膜过程的分类膜分离过程常用的是以压差为动力的液体分离膜。依据膜孔径和截留特性的不同,可分为微滤、超滤、纳滤和反渗透,见下图。膜过滤方传统过滤方式为死端过滤:料液一进一出,因滤材表面被堵
6、塞,而导致过滤速度迅速减少。膜系统大多采用错流过滤:流体一进二出,流动方向与膜表面平行,削薄膜面的浓差极化层、减少过滤阻力,膜面不易堵塞,过滤速度较快。如下图所示。四膜系统组成目前常见的膜分离过程以压差为驱动力、以错流过滤方式进行,可在常温下进行分子级的过滤分离,是一种物理过程,其间不发生相变。动力由泵提供,流经膜表面时,部分较小的分子透过膜,而大分子被截留。膜系统组成及基本过滤原理见下图:五反渗透基本原理1、反渗透过程反渗透是利用反渗透膜选择性的只能通过溶剂(通常是水)而截留离子物质的性质,以膜两侧静压差为推动力,克服溶剂的渗透压,使溶剂通过反渗透膜而实现对液体混合物进行分离的膜过程。反渗透
7、同NF、UF一样均属于压力驱动型膜分离技术,其操作压差一般为1.510.5MPa,截留组分为(C1.O)X10-1Om小分子物质。除此之外,还可以从液体混合物中去处全部悬浮物、溶解物和胶体,例如从水溶液中将水分离出来,以达到分离、纯化等目的。目前,随着超低压反渗透膜的开发,已可在小于IMPa压力下进行部分脱盐,适用于水的软化和选择性分离。2、分离原理反渗透膜的选择透过性与组分在膜中的溶解、吸附和扩散有关,因此除与膜孔的大小、结构有关外,还与膜的化学、物理性质有密切关系,即与组分和膜之间的相互作用密切相关。由此可见,反渗透分离过程中化学因素(膜及其表面特性)起主导作用。当用一个半透性膜分离两种不
8、同浓度的溶液时,膜仅允许溶剂分子通过。由于浓溶液中溶剂的化学位低于它在稀溶液中的化学位,稀溶液中的溶剂分子会自发地透过半透膜向浓溶液中迁移。3、反渗透的应用反渗透技术的大规模应用主要是苦咸水和海水淡化,此外被大量地用于纯水制备及生活用水处理,以及难于用其他方法分离地混合物。反渗透地工业应用包括:(1)海水和苦咸水脱盐制饮用水;(2)制备半导体工业、医药、化学工业中所需的超纯水;(3)用于浓缩过程,包括:食品工业中果汁、糖、咖啡的浓缩;电镀和印染工业中废水的浓缩;奶品工业中生产干酪前牛奶的浓缩。六纳滤膜基本原理纳滤技术是反渗透膜过程为适应工业软化水的需求及降低成本的经济性不断发展的新膜品种,以适
9、应在较低操作压力下运行,进而实现降低成本演变发展而来的。我国于二十世纪90年代初期开始研制纳滤膜,与国外相比,我国纳滤技术整体上只能说是刚刚开始,膜的研制、组器技术和应用开发等都刚起步。1、纳滤过程纳滤(NF)是介于反渗透很超滤之间的一种压力驱动型膜分离技术。它具有两个特性:对水中的分子量为数百的有机小分子成分具有分离性能;对于不同价态的阴离子存在Donnan效应。物料的荷电性,离子价数荷浓度对膜的分离效应有很大影响。(道南(DOnnan)模型=道南(Donnan)效应,Donnan模型以Donnan平衡为基础,用来描述荷电膜的脱盐过程,一般纳滤膜多为荷电膜,所以该模型更多用来描述纳滤过程)用
10、于饮用水和工业用水的纯化,废水净化处理,工艺流体中有价值成分的浓缩等方面,其操作压差为0.52.OMPa(或0.3451.035MPa),截留分子量界限为200-IOOO(或200500),分子大小为Inm的溶解组分的分离。由于NF膜达到同样的渗透通量所必需施加的压差比用RO膜低0.53MPa,故NF膜过滤又称“疏松型R0”或“低压反渗透”。2、分离原理NF膜与RO膜均为无孔膜,通常认为其传质机理为溶解一扩散方式。但NF膜大多为荷电膜,其对无机盐的分离行为不仅由化学势梯度控制,同时也受到电势梯度的影响,即NF膜的行为与其荷电性能,以及溶质荷电状态和相互作用都由关系。3、纳滤膜的应用纳滤(NF)
11、膜是介于反渗透(Ro)膜及超滤(UF)膜之间的一种新型分离膜,由于其具有纳米级的膜孔径、膜上多带电荷等结构特点,因而主要用于以下几个方面:(1)不同分子量的有机物质的分离;(2)有机物与小分子无机物的分离;(3)溶液中一价盐类与二价或多价盐类的分离;(4)盐与其对应酸的分离。从而达到饮用水和工业用水的软化,料液的脱色、浓缩、分离、回收等目的。对Na+和C1-等单价离子的截留率较低,但对Ca2+、Mg2+、S042-等二价离子及除草剂、农药、色素、染料、抗生素、多肽和氨基酸等小分子量(200-1000)物质的截留率很高,而且水在纳滤膜中的渗透速率远大于反渗透膜,所以当需要对低浓度的二价离子和分子
12、量在500到数千的溶质进行截留时,选择纳滤比使用反渗透经济。七超滤膜基本原理超滤(UF)现象在130多年前就已经被发现,我国对超滤技术的研究较国外要晚10年左右。二十世纪70年代中期起步,80年代大发展,90年代获得广泛应用。1、超滤过程一般认为超滤是一种筛选分离过程,在静压差为推动力的作用下,原料液中溶剂和小溶质粒子从高压的料液侧透过膜到低压侧,一般称为滤除液或透过液,而大粒子组分被膜所阻拦,使它们在滤剩液中浓度增大。按照这样的分离机理,超滤膜具有选择性表面层的主要因素是形成具有一定大小和形状的孔,聚合物的化学性质对膜的分离特性影响不大。2、分离机理一般认为UF的分离机理为筛孔分离过程,但膜
13、表面的化学性质也是影响超滤分离的重要因素。即超滤过程中溶质的截留有在膜的表面的机械截留(筛分)、在膜孔中停留而被除去(阻塞)、在膜的表面及孔内的吸附(一次吸附)三种方式。3、超滤膜的应用超滤的工业应用可以分为三种类型:(1)浓缩;(2)小分子溶质的分离;(3)大分子溶质的分级。绝大部分的工业应用属于浓缩这方面。可以采用与大分子结合或复合的办法来分离小分子溶质。超滤在需将尺寸较大的分子和微粒与低分子物质或溶剂分离的领域得到了广泛地应用,超滤装置可单独运行,也可与其它处理设备结合应用于各种分离过程中。目前超滤膜除了用于工业废水处理、城市污水处理、饮用水的生产、高纯水的制备、生物制剂的提纯以及在食品
14、和医药工业外,正在向非水体系的应用发展,无机超滤膜在这一领域有良好的前景。八微滤膜应用微滤是所有膜过程中应用最普遍、销售额最大的一项技术,其年销售额大于其它所有膜过程销售额的总和。工业上,微滤主要用于将大于0.Imm的粒子与溶液分开的场合。它的最大市场是制药行业的除菌过滤和电子工业用高纯水的制备,在食品工业的许多领域得到了成功的运用,在各种与生物、生理有关的分析中细胞的捕获、各种颗粒的富集等方面也得到了广泛应用。随着水资源的日趋紧张及社会生活水平的提高,饮用水生产和城市污水处理成为微滤过程的两个潜在的大市场。其最新的应用领域是生物技术和生物医学技术领域。九膜技术的应用领域1、高质量饮用水供给随
15、着水体的污染和人民生活水平提高,人们越来越希望得到高质量的饮用水供给。采用活性炭吸附过滤和超滤结合制取高质量饮用水,设备投资少,制水成本低,是优质饮用水制备的经济有效方法,具有广阔的市场前景。2、工业供水自来水和地下水的水质不能满足许多化学工业、电子工业和纺织工业的要求,需要经过净化处理方可以使用,超滤膜技术是净化工业用水的重要技术之一。3、医药用水医药针剂用水是采用多级蒸储制备的,其工艺繁琐、能耗高、而且质量常常得不到保证。用超滤膜技术除针剂热源和终端水热源,取得很好效果。4、工艺水的处理(分离、浓缩、分级和纯化)在各工业生产过程中,往往有分离、浓缩、分级和纯化某种水溶液的需求。传统用的方法
16、是沉淀、过滤、加热、冷冻、蒸储、萃取和结晶等过程。这些方法表现出流程长、耗能多、物料损失多、设备庞大、效率低、操作繁琐等缺点,以超滤膜技术取代某种传统技术可以获得显著的经济效益。5、膜技术在制药工业的应用膜技术广泛应用于生物制备和医药生产中的分离、浓缩和纯化。如血液制备的分离、抗菌素和干扰素的纯化、蛋白质的分级和纯化、中草药剂的除菌和澄清等。发酵是生物制药的主流技术,从发酵液中提取药物,传统工艺是溶剂萃取或加热浓缩,反复使用有机溶剂和酸碱溶液,耗量大,流程长,废水处理任务重。特别是许多药物热敏性强,使传统工艺的实用性多受限制。国际先进的制药生产线,大量采用膜分离技术代替传统的分离、浓缩和纯化工艺。如以膜设备浓缩纯化抗生素、中药汤及