《课题3两条直线的位置关系一平行与垂直.docx》由会员分享,可在线阅读,更多相关《课题3两条直线的位置关系一平行与垂直.docx(7页珍藏版)》请在优知文库上搜索。
1、课题73篇修由碳的色置关密(一)牛朽与拿喘教学目的:1 .熟练掌握两条直线平行与垂直的充要条件,能够根据直线的方程判断两条直线的位置关系.2 .通过研究两直线平行或垂直的条件的讨论,培养学生运用已有知识解决新问题的能力以及学生的数形结合能力.3 .通过对两直线平行与垂直的位置关系的研究,培养学生的成功意识,激发学生学习的兴趣.教学重点:两条直线平行和垂直的条件。教学难点:两直线的平行与垂直问题转化与两直线的斜率的关系问题。授课类型:新授课。课时安排:1课时。教具:多媒体、实物投影仪。教学过程:一、复习引入:直线名称已知条件直线方程使用范围小意图点斜式6。,必),ky-y=I(x-x1)攵存在斜
2、截式k,by=kx-st-b&存在两点式区,M)(%22)y-y-力一必力2一玉M%,/截距式a,bXy.abaOybO一般式A、B、CSRAxB+C=0A2+B20二、讲解新课:1 .特殊情况下的两直线平行与垂直.当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90,另一条直线的倾斜角为0,两直线互相垂直。2 .斜率存在时两直线的平行与垂直.设直线4和4的斜率为和&,它们的方程分别是:1:y=kxx+b;I2:y=k2x-b2.两直线的平行与垂直是由两直线的方向来决定的,两直线的方向又是
3、由直线的倾斜角与斜率决定的,所以我们下面要解决的问题是两平行与垂直的直线它们的斜率有什么特征。如果那么它们的倾斜角相等:a=%,两条直线平行(不重合)的情形.tana=tana2,W1=Ar2.反过来,如果两条直线的斜率相等,k=k那么tana=tana2,由于0WalVI80,0oa2。2,甲图的特征是与,2的交点在X轴上方;乙图的特征是乙与4的交点在X轴下方;丙图的特征是4与。的交点在X轴上,无论哪种情况下都有%=90+%因为4和4的斜率为占和&,即%w90,所以%Ootana1=tan(9Oo+a0)=,即匕=-?-或匕您=一1。tana2k2反过来,如果匕=一一或匕果=-1n4=90+
4、2=1I2.玲两条直线都有斜率,如果它们互相垂直,则它们的斜率互为负倒数;反之,如果它们的斜率互为负倒数,则它们互相垂直,即1_LAO吊=-kik2=-1oA2用向量关系推导:设直线和力的斜率分别是占和心,则直线4有方向向量7=(1,匕),直线4有方向向量坂=(1,&),根据平面向量的有关知识,有aA-bab=O+klk2=O即/lJ./2。2#2=-1所以,如果两条直线的斜率分别是和&,则这两条直线垂直的充要条件是kk2=-1.思考2:已知直线/1和,2的一般式方程为点A1x+B1y+C1=0,I2:A2xB2y+C2=0,则/_1_乙OAA2+与层=0三、讲解范例:例1两条直线2x-4j7
5、=0,l2:x-2y+5=0.求证:li/I2证法一:因为4:y=-x+-fI2:y=X+1242?22所以%=&且仇Wb2,2.2-47证法二:二一=,*.IiHl21 -2512例2求过点A(l,-4)且与直线2x+3y+5=O平行的直线方程.2解一:已知直线的斜率为-士,因为所求直线与已知直线平行,因此它的斜32率也是O32根据点斜式,得到所求直线的方程是y+4=-(x-l)即2x+3y+10=0.解二:设与直线2x+3y+5=0平行的直线/的方程为2x+3y+2=0(5),/经过点A(l,-4),2l+3(-4)+=0,解之得4=10所求直线方程为2x+3y+10=0.注意:解法一求直
6、线方程的方法是通法,必须掌握;解法二是常常采用的解题技巧。一般地,直线Ar+8),+C=O中系数A、8确定直线的斜率,因此,与直线Ar+8y+C=O平行的直线方程可设为Ar+3),+4=0(;IWC),其中4待定。(直线系)例3求与直线2x+3),+5=0平行,且在两坐标轴上的截距之和为2的直6线的方程.解:设直线的方程为2x+3y+4=0(lw5),令X=0,则在y轴上的截距为6=-&;令y=0,则在X轴上的截距为。=一4,32由。+人=一人一人=得4=一1,,所求直线方程为2x+3y1=0.236例4已知直线(0+2)x+(l-)y-3=0与(4-l+(2+3)y+2=0互相垂直,求的值.
7、解:A=+2,A2=a-fBl=I-a,约=2a+3且两直线互相垂直(a+2)(a-1)+(1-a)(2a+3)=0,解之得4=l。注意:若用斜率来解,则需讨论。例5求过点A(2,l),且与直线2x+y-10=0垂直的直线/的方程.分析:一般地,由于与直线Ar+8y+C=0垂直的直线的斜率互为负倒数,故可得其方程为Ar-Ay+l=O,这是常常用到的解题技巧(直线系方程)解:设与直线2工+丫-10=0垂足的直线方程为1-2丁+/1=0直线/经过点A(2,l),22xl+4=0,解得/1=0。故所求的方程为x-2y=0o四、课堂练习:1 .求使直线工一2砂二1和2x-2纱=1平行的实数的取值。(答
8、案:a=0)2 .当4为何实数时,两直线x+y=2+2和ar+y=4+1平行?(答案:a=l)o3 .求直线Ar-2y-1=0和直线6x-4y+C=0平行的条件.-2-1分析:.“4-,平行的条件是A=3且C20126-4C4.已知直线4:x+ay-2a-2=0,I2:ax+y-l-a=0。(1)若/2,试求。的值;(ii)若试求。的值。五、小结:1.本节知识重点是掌握两条直线垂直的判断条件,并能熟练地判断;难点是对斜率的讨论,即利用斜率判定两直线垂直时,要注意考虑斜率不存在时是否满足题意,以防漏解O2.填表:两直线方程重合平行限制条件:y=kxx-bxI2:y=k2x+b2%、心都存在1:A1x+B1+C1=OI2:A2xB2jC2=0A1B1C10A2B2C20六、课后作业:。七、板书设计(略)。八、课后记:。