第9章 异方差问题检验与修正名师编辑PPT课件.ppt

上传人:王** 文档编号:624594 上传时间:2023-12-08 格式:PPT 页数:64 大小:1.14MB
下载 相关 举报
第9章 异方差问题检验与修正名师编辑PPT课件.ppt_第1页
第1页 / 共64页
第9章 异方差问题检验与修正名师编辑PPT课件.ppt_第2页
第2页 / 共64页
第9章 异方差问题检验与修正名师编辑PPT课件.ppt_第3页
第3页 / 共64页
第9章 异方差问题检验与修正名师编辑PPT课件.ppt_第4页
第4页 / 共64页
第9章 异方差问题检验与修正名师编辑PPT课件.ppt_第5页
第5页 / 共64页
第9章 异方差问题检验与修正名师编辑PPT课件.ppt_第6页
第6页 / 共64页
第9章 异方差问题检验与修正名师编辑PPT课件.ppt_第7页
第7页 / 共64页
第9章 异方差问题检验与修正名师编辑PPT课件.ppt_第8页
第8页 / 共64页
第9章 异方差问题检验与修正名师编辑PPT课件.ppt_第9页
第9页 / 共64页
第9章 异方差问题检验与修正名师编辑PPT课件.ppt_第10页
第10页 / 共64页
亲,该文档总共64页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《第9章 异方差问题检验与修正名师编辑PPT课件.ppt》由会员分享,可在线阅读,更多相关《第9章 异方差问题检验与修正名师编辑PPT课件.ppt(64页珍藏版)》请在优知文库上搜索。

1、第9章 异方差:检验与修正Heteroskedasticity:test and correctionContents Whats heteroskedasticity?Why worry about heteroskedasticity?How to test the heteroskedasticity?Corrections for heteroskedasticity?Whats heteroskedasticity?Recall the assumption of homoskedasticity implied that conditional on the explanatory

2、 variables,the variance of the unobserved error,u,was constantvar(u|X)=s2(homoskedasticity)If this is not true,that is if the variance of u is different for different values of the Xs,then the errors are heteroskedasticvar(ui|Xi)=si2(heteroskedasticity).X1X2E(Y|X)=b0+b1XYf(Y|X)homoskedasticity.X3Exa

3、mple of Heteroskedasticity.X X1X2Yf(Y|X)X3.E(Y|X)=b0+b1XGenerally,cross-section data more easily induce heteroskedasticity because of different characteristics of different individuals.Consider a cross-section study of family income and expenditures.It seems plausible to expect that low income indiv

4、iduals would spend at a rather steady rate,while the spending patterns of high income families would be relatively volatile.If we examine sales of a cross section of firms in one industry,error terms associated with very large firms might have larger variances than those error terms associated with

5、smaller firms;sales of larger firms might be more volatile than sales of smaller firms.XYhomoskedasticity XYIncreasing with XXYComplicated heteroskedasticity YDecreasing with Xindindsalessalesrdexprdexpprofitprofitindindsalessalesrdexprdexpprofitprofitpackingpacking6375.36375.362.562.5185.1185.1nurs

6、enurse80552.880552.86620.16620.113869.913869.9nonbanknonbank11626.411626.492.992.91569.51569.5spacespace95294952943918.63918.64487.84487.8serviceservice14655.114655.1178.3178.3274.8274.8consumptionconsumption101314.1101314.11595.31595.310278.910278.9metalmetal21896.221896.2258.4258.42828.12828.1elec

7、tronicselectronics116141.3116141.36107.56107.58787.38787.3househouse26408.326408.3494.7494.7225.9225.9chemistrychemistry122315.7122315.74454.14454.116438.816438.8manufacturemanufacture32405.632405.6108310833751.93751.9polymerpolymer141649.9141649.93163.83163.89761.49761.4leisureleisure35107.735107.7

8、1620.61620.62884.12884.1computercomputer175025.8175025.813210.713210.719774.519774.5paperpaper40295.440295.4421.7421.74645.74645.7fuelfuel230614.5230614.51703.81703.822626.622626.6foodfood70761.670761.6509.2509.25036.45036.4autoauto2935432935439528.29528.218415.418415.4050001000015000R&D expenditure

9、(million dollars)0100000200000300000sales(million dollars)050001000015000R&D expenditure(million dollars)/Fitted values0100000200000300000sales(million dollars)Why Worry About Heteroskedasticity?The consequences of heteroskedasticity OLS estimates are still unbiased and consistent,even if we do not

10、assume homoskedasticity.take the simple regression as an example Y=b0+b1 X+uWe know the OLS estimator of b1 is 11221112iiiiiiiiiXX YXX uXXXXXX uEEXXbbbbb+The consequences of heteroskedasticity,cont.The R2 and adj-R2 are unaffected by heteroskedasticity.Because RSS and TSS are not affected by heteros

11、kedasticity,our R2 and adj-R2 are also not affected by heteroskedasticity.221111ESSRSSRTSSTSSRSSnkRTSSn The consequences of heteroskedasticity,cont.The standard errors of the estimates are biased if we have heteroskedasticity211112222222122var,varvarBecause of heteroskedasticity,then var,which are n

12、ot constant,therefore,var.However,OLS esiiiiiiiiiiiiiiXX uXX uXXuXXXXXXuXXXXbbbbssb+212timate of the variance of is.So,in this case,OLS estimates of the variances of the partial coefficients are biased.iXXsbThe consequences of heteroskedasticity,cont.The OLS estimates arent efficient,thats the varia

13、nces of the estimates are not the smallest variances.If the standard errors are biased,we can not use the usual t statistics or F statistics for drawing inferences.That is,the t test and F test and the confidence interval based on these test dont work.In a word,when there exists heteroskedasticity,w

14、e can not use t test and F test as usual.Or else,well get the misleading result.Summary of the consequences of heteroskedasticity OLS estimates are still unbiased and consistent The R2 and adj-R2 are unaffected by heteroskedasticity The standard errors of the estimates are biased.The OLS estimates a

15、rent efficient.Then,the t test and F test and the confidence interval dont work.How to test the heteroskedasticity?Residual plot w In the OLS estimation,we often use the residual ei to estimate the random error term ui,therefore,we can test whether there is heteroskedasticity of ui by examine ei.We

16、plot the scatter graph between ei2 and X.Residual plot,cont.Xe2a)homoskedasticity Xe2b)Xe2c)Xe2d)Xe2e)Residual plot,cont.w If there are more than one independent variables,we should plot the residual squared with all the independent variables,separately.w There is a shortcut to do the residual plot test when there are more than 1 independent variables.That is,we plot the residual with the fitted value,because is just the linear combination of all Xs.Residual plot:example 9.2-50000500010000Residu

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!