第5章电力电子技术中的磁问题.ppt

上传人:王** 文档编号:611001 上传时间:2023-12-08 格式:PPT 页数:44 大小:1.20MB
下载 相关 举报
第5章电力电子技术中的磁问题.ppt_第1页
第1页 / 共44页
第5章电力电子技术中的磁问题.ppt_第2页
第2页 / 共44页
第5章电力电子技术中的磁问题.ppt_第3页
第3页 / 共44页
第5章电力电子技术中的磁问题.ppt_第4页
第4页 / 共44页
第5章电力电子技术中的磁问题.ppt_第5页
第5页 / 共44页
第5章电力电子技术中的磁问题.ppt_第6页
第6页 / 共44页
第5章电力电子技术中的磁问题.ppt_第7页
第7页 / 共44页
第5章电力电子技术中的磁问题.ppt_第8页
第8页 / 共44页
第5章电力电子技术中的磁问题.ppt_第9页
第9页 / 共44页
第5章电力电子技术中的磁问题.ppt_第10页
第10页 / 共44页
亲,该文档总共44页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《第5章电力电子技术中的磁问题.ppt》由会员分享,可在线阅读,更多相关《第5章电力电子技术中的磁问题.ppt(44页珍藏版)》请在优知文库上搜索。

1、1电力电子技术中的磁问题15.1 电磁学基本知识25.2 电力电子设备中磁元件的工作情况35.3 高频变压器的分析与计算45.4 高频滤波电感的分析与计算55.5 整流变压器的参数计算65.6 晶闸管变流设备中的电抗器参数计算第5章 电力电子技术中的磁问题2 电荷量为q,其运动速度为v,电荷受到的场作用力F。B的单位为特斯拉(T)qvFB 在物理学和工程技术上,为了形象地说明问题,经常用一些虚拟的曲线磁力线,磁力线的疏密表示磁场的强弱,在某一截面上,这些磁力线的数量叫做磁通其单位为韦伯(Wb)。SdSB如果所观察的截面中磁感应强度是均匀的,即B为常数,则有 BS 磁感应强度磁感应强度B磁通磁通

2、3衡量电流在某点引起的磁场强度的物理量叫做磁场强度H。如果在磁场中沿一个闭合回路l积分,闭合回路中包裹的导线数为N,每根导线中的电流强度为I,根据麦克斯韦方程,它们的关系为,H的单位为A/m。lNIHdl 最常见的研究对象是在一个截面处处均匀的磁路中绕有一定匝数的线圈,如右图,此时有 NIHl 磁场强度磁场强度H4磁感应强度和磁场强度的比值为磁导率HB 对于铁磁性材料,磁导率一般不是一个常数,随磁场强度的变化而变化,因此磁感应强度B也随磁场强度变化。磁导率磁导率5不同的材料其磁导率是不一样的,通常把真空中的磁导率叫做0,0=410-7H/m。对于其它材料,=0r,r称为相对磁导率,视材料不同r

3、的差别很大。如果r1称之为顺磁性顺磁性材料,如空气、铝等。有些材料的r特别大,如铁、镍和一些合金等,其数值为数百、数千甚至更大,将这类材料称为铁磁性铁磁性材料。6在一块未被磁化的铁磁性材料上加以磁场,其磁化曲线首先从原点向a点移动,磁感应强度B随磁场强度H的增大而增大,但是由于导磁率的非线性特点,两者并不呈线性关系,随H的增大,曲线的斜率越来越小,当到达a点,斜率很小,再增大H磁感应强度B变化不明显,称进入饱和状态。此点对应的磁感应强度为饱和磁感应强度BS;此点对应的磁场强度为饱和磁场强度HS。磁滞回线磁滞回线7 居里温度TC磁性材料的导磁率与温度有关。在常温下,多数磁性材料的导磁率随温度变化

4、不明显,但温度上升到一定程度,导磁率会迅速下降。这个温度称为该磁性材料的居里温度TC。出现这一现象的原因是当温度升高到一定程度时,铁磁性材料中的磁畴消失,铁磁性材料变成一般的顺磁性材料。如果磁性元件的温度达到了居里温度,其电感量会大大地下降,往往会使电流过大而造成设备的损坏。不同材料的居里温度也是不同的,如铁氧体450;坡莫合金(IJ85)为400;冷轧硅钢为740.8在整流变压器、推挽式变换器和桥式变换器的输出变压器等元件中,初级(激磁)绕组中的电流中没有直流成分。电流从负的最大值上升到正的最大值,然后又从正的最大值减小到负的最大值。由于电流正负最大值相等,磁路中的磁场强度也做周期性变化:从

5、-Hm逐渐增大到+Hm,又减小到-Hm。由于B与H的非线性关系,在H-B平面上,运动轨迹是一个闭合的回线。通过励磁绕组的电流是纯粹的交流电流通过励磁绕组的电流是纯粹的交流电流19这种情况多发生在单端变换器和晶闸管电路的触发脉冲变压器中。单向电力电子开关与变压器的初级绕组串联,电子开关接通时,绕组中的电流从0逐渐上升,达到最大值时开关关断,初级绕组中的电流随即消失,但磁场仍然存在,磁场强度H由其它绕组中的电流维持。然后H逐渐下降,最终到0。2激磁电流从激磁电流从0到最大值做单方向的周期变化到最大值做单方向的周期变化10电感的电流中有一个较大的直流分量,在其上面叠加着一定周期性的波动成分。电流从最

6、小值增大到最大值,又下降到最小值,完成一个工作周期。B-H的运动轨迹也是一个闭合曲线。可以看出,闭合曲线与横轴和纵轴都不相交,处于第一象限的右上部。激磁电流中包含着较大的直流成分激磁电流中包含着较大的直流成分311为了防止磁饱和,经常在磁芯的磁路中加入气隙。由于空气或气隙中的其他材料的导磁率要比铁芯材料小得多,所以整个磁路的等效(平均)导磁率比未加气隙时小。反映在B-H平面上,磁滞回线的斜率变得比原来小了。加入气隙前后材料的饱和磁感应强度BS是不变的,由于有气隙的磁路磁滞回线的斜率变小,对应BS的饱和磁场强度HS变大了。125.3 高频变压器的分析与计算高频变压高频变压器的分析器的分析与计算与

7、计算5.3.1 单端正激输出变压器的分析计算5.3.2 单端反激输出变压器的分析计算5.3.3 纯交流变压器的分析计算13电力电子开关S是单向的,与初级绕组Np串联;次级绕组Ns与整流二极管VD1相串联,将变换后的电能整流后输出给负载;Ni是消磁绕组,将S关断后磁路中储存的剩余电能回馈给电源。单端正激式电路的输出变压器的工作模式属于电流单方向变化的情况,B-H的运动轨迹在第一象限。单端正激变压器的结构单端正激变压器的结构14反映磁芯尺寸和形状一般由磁芯窗口面积W和磁芯截面积SC的乘积来确定,乘积WSC越大,说明磁芯体积越大。一般采用以下经验公式来计算WSC143.1)9.11(fBKPWSmO

8、C 式中Bm为磁感应强度变化量(T),对于铁氧体磁芯一般为0.15T;PO为输出功率(W);f为斩波器的工作频率(Hz)。系数K=KOKP。KO为窗口使用系数,反映窗口被绕组填充的情况,一般取0.35;KP为绕线系数,一般取0.43。计算出的WSC乘积的单位为cm4。确定磁芯大小确定磁芯大小1154maxmin10fBSDUNpmCi式中:Uimin电源电压最小值(V);Dmax最大占空比;f 工作频率(Hz);SC 磁芯截面积(cm2);Bm磁感应强度变化量(T)。计算初级绕组的匝数计算初级绕组的匝数216由于次级绕组NS与初级绕组NP为同一磁路,所以在电子开关闭合时,NS与NP的端电压符合

9、变比关系,即 SiSPUUNN/次级绕组两端的电压为脉冲形式,占空比为D,经二极管整流后,电压平均值也就是输出电压UO应再乘以D。多数单端式直流变换器为降压型,输出电压比较低,这样就不能忽略整流二极管的直流压降UD。根据上述原则,次级绕组由下式计算PiODSNUDUUNminmax)(消磁绕组电压与初级绕组一样,其匝数与初级绕组也应相同 piNN 计算次级绕组和消磁绕组的匝数计算次级绕组和消磁绕组的匝数317首先计算初级绕组的电流。初级绕组的电流平均值与电源电压Ui的乘积就是输入功率Pi,但初级电流是不断变化的,即使在S导通期间,电流也是从小到大线性增长的,所以初级最大电流IP要比初级平均电流

10、大。而确定导线的直径或截面积要根据最大电流,由于材料、功率、频率等因素的差异,精确地计算初级电流最大值有一定的难度。通常计算的方法是在平均电流的基础上再除以一个小于1的系数KT,根据经验,可取KT=0.707。TiOPKUPImin 对于铜质导线,可选最大电流密度Jm=4A/mm2。这样初级绕组导线的截面积SP由下式确定 mPPJIS/计算各绕组导线的截面积和直径计算各绕组导线的截面积和直径418为了克服集肤效应的不良影响,通常对工作频率较高的变压器绕组采用多股并绕的方法,设初级绕组的股数为GP,则每股导线的直径dP为PPPSGd1 类似地,次级绕组的导线截面积SS、直径dS分别为mOSJIS

11、/SSSSGd41 消磁绕组的匝数与初级绕组相同,不必多股并绕,只确定其导线直径和截面积。当电子开关关断后,消磁绕组中流过的电流为激磁电流,这个电流通常在初级总电流的5%到10%范围,导线截面积Si和导线直径di分别为mPiJIS)1.005.0(iiSd4 19就磁场的变化规律而言,反激式变压器与正激式变压器是一样的。但是,反激式变换器的电路工作原理与正激式是不同的,所以在变压器的设计和计算方面两者有着较大的差别。图为反激式变换电路输出部分的原理图。图中的变压器存在着更多电感的属性。当电子开关闭合时,由于次级感应电压的极性使得二极管承受反压,二极管截止而次级绕组中没有电流,电流流过初级绕组相

12、当于给一个电感储存能量。在电子开关断开时,初级电流即刻消失,电感的储能通过次级绕组经导通着的二极管向负载释放。所以,这种变压器的计算应从计算电感入手。20DUPIiOPm2首先计算初级绕组的电流最大值。电子开关S闭合后,初级电流从0开始上升,如果忽略回路的电阻,电流的变化规律是线性的。当S再度断开时,电流上升到最大值IPm。在S导通期间(ton)初级电流的平均值为IPm/2。接下来是S关断的一段时间toff,这段时间初级绕组中没有电流。两段时间之和为周期T。令占空比D=ton/T,不难看出,整个周期中电流的平均值为IPAV=D IPm/2。这样就可以确定,电源的输出功率Pi=UiIPAV。如果

13、效率为,输出功率为PO=Pi。这样,初级电流最大值可由下式得出 初级电感的计算初级电感的计算21由初级电流最大值可求出由初级绕组形成的电感L1,初级绕组中的电流iP在S导通时直线上升,其变化规律为tULiiP11当t=ton时,iP恰好为最大值IPm,即IPm=tonUi/L1,由此可得出fIDULPmi1(H)22反激式变压器相当于一个电感,为了防止电感磁饱和,通常在磁路中留有气隙。气隙的厚度lg是电感设计中的一个重要参数。lg可由下式求出2214.0mCPmgBSILl(cm)式中:SC磁芯截面积(cm);Bm磁感应强度变化量(T);IPm初级电流最大值(A)磁芯气隙的计算磁芯气隙的计算2

14、3初级绕组的匝数为NP,电流为IP,设磁路长度为l,磁场强度为H。如果磁路各点的导磁率相等,有NP IP=l H=lB/。但是加入气隙后,气隙中的导磁率要比其它部位大得多,方程变为NP IP=l1 B/1+lgB/g式中l1为减去气隙后磁路其它部分的长度,1为其导磁率;lg为气隙长度,g为气隙中的导磁率。由于1比g大得多,上式可近似为 NP IP=lgB/g将最大磁场强度变化量Bm(T)、最大初级电流IPm(A),代入上式,并取lg单位为cm,可得出4104.0PmgmPIlBN 初级匝数NP的计算24电子开关接通时电路的电压方程为Ui=NPd/dt,认为磁场的变化是线性增长的,在t=DT时,

15、磁通量达到最大值m,则此时方程为DTNUmPi 电子开关断开时,整流二极管导通,次级电路的电压方程为US=NSd/dt。由于磁通不能突变,磁通m从开始下降,到t=(1-D)T时下降到0,此瞬间的电压方程为TDNUmSS)1(式中US应包括负载电压UO和二极管导通压降UD。次级匝数的计算公式为iODPSDUDUUNN)1)(次级绕组NS的计算25求出电感量L1、最大电流IPm、导线直径d以后,可根据需要选择磁性材料,从而得到磁感应强度最大变化量Bm,再由上述参数作为选择磁芯尺寸的依据。电感越大、电流越大,磁芯的尺寸就越大,而选择BS较大的材料,相应的Bm会大一些,磁芯的尺寸可以减小。磁芯尺寸选择

16、可根据以下经验公式42110mPmCBdILWS(cm4)磁芯尺寸的选择磁芯尺寸的选择26有些高频变压器磁场的变化是纯交流的,磁感应强度从负的最大值到正的最大值之间周期性的变化。磁感应强度的变化规律如图5-4所示。全桥式、半桥式和推挽式变换器的变压器均具有这个特点。在设计此类变压器时,应注意以下几点:(1)磁滞回线在1、2、3、4象限变化,磁感应强度在负的最大值和正的最大值之间,所以同样材料允许的最大磁感应强度变化量Bm是单端式变压器的2倍;(2)一般不需在磁路中加入气隙;(3)为减小激磁电流,可以适当地增加初级绕组的匝数;(4)有时电流的正负半周分别由两个线圈交替提供,如推挽电路的初级、全波整流的次级线圈,必须设计两个相同的绕组串联,中心抽头。WSC可按以下经验公式计算)(10242cmKfKJBPWSPOmmOC 27在直流变换电路中,都设有LC滤波电路,滤波电感中的电流含有一个直流成分和一个周期性变化的脉动成分。磁场的变化规律如图 首先讨论以限制电流波动为目的的电感量的计算。由对斩波器的分析可知,电路进入稳定状态后,电感电流在最小值ILmin和最大值ILmax之间波动变化,波动的

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!