中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc

上传人:王** 文档编号:1180980 上传时间:2024-04-18 格式:DOC 页数:16 大小:74.50KB
下载 相关 举报
中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc_第1页
第1页 / 共16页
中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc_第2页
第2页 / 共16页
中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc_第3页
第3页 / 共16页
中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc_第4页
第4页 / 共16页
中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc_第5页
第5页 / 共16页
中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc_第6页
第6页 / 共16页
中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc_第7页
第7页 / 共16页
中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc_第8页
第8页 / 共16页
中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc_第9页
第9页 / 共16页
中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc_第10页
第10页 / 共16页
亲,该文档总共16页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc》由会员分享,可在线阅读,更多相关《中英文毕业论文桥梁裂缝产生原因浅析土木工程毕业论文外文翻译.doc(16页珍藏版)》请在优知文库上搜索。

1、专业外文资料翻译题 目: 桥梁裂缝产生原因浅析 学 科 部:理工学科部专 业:土木工程道桥方向班 级: 学 号: 学生姓名:指导教师:桥梁裂缝产生原因浅析近年来,我省交通基础建设得到迅猛发展,各地建立了大量的混凝土桥梁。在桥梁建造和使用过程中,出现了大量有关因出现裂缝而影响工程质量甚至导桥梁垮塌的报道。混凝土开裂可以说是“常发病”和“多发病”,经常困扰着桥梁工程技术人员。其实,如果采取一定的设计和施工措施,很多裂缝是可以克服和控制的。为了进一步加强对混凝土桥梁裂缝的认识,尽量避免工程中出现危害较大的裂缝,本文对混凝土桥梁裂缝的种类和产生的原因作较全面的分析、总结,以方便设计、施工找出控制裂缝的

2、可行办法,达到预防的作用。混凝土桥梁裂缝种类和形成原因复杂而繁多,甚至多种因素相互影响,但每一条裂缝均有其产生的一种或几种主要原因。这种混凝土桥梁裂缝,就其产生的原因,大致可划分如下几种:一、荷载引起的裂缝混凝土桥梁在常规静、动荷载及次应力下产生的裂缝称荷载裂缝,归纳起来主要有直接应力裂缝、次应力裂缝两种。直接应力裂缝是指外荷载引起的直接应力产生的裂缝。裂缝产生的原因有:(一) 设计计算阶段,结构计算时不计算或部分漏算;计算模型不合理;结构受力假设与实际受力不符;荷载少算或漏算;内力与配筋计算错误;结构安全系数不够。结构设计时不考虑施工的可能性;设计断面不足;钢筋设置偏少或布置错误;结构刚度不

3、足;构造处理不当;设计图纸交代不清等。(二) 施工阶段,不加限制地堆放施工机具、材料;不了解预制结构结构受力特点,随意翻身、起吊、运输、安装;不按设计图纸施工,擅自更改结构施工顺序,改变结构受力模式;不对结构做机器振动下的疲劳强度验算等。(三) 使用阶段,超出设计载荷的重型车辆过桥;受车辆、船舶的接触、撞击;发生大风、大雪、地震、爆炸等。 次应力裂缝是指由外荷载引起的次生应力产生裂缝。裂缝产生的原因有: (一) 在设计外荷载作用下,由于结构物的实际工作状态同常规计算有出入或计算不考虑,从而在某些部位引起次应力导致结构开裂。例如两铰拱桥拱脚设计时常采用布置“X”形钢筋、同时削减该处断面尺寸的办法

4、设计铰,理论计算该处不会存在弯矩,但实际该铰仍然能够抗弯,以至出现裂缝而导致钢筋锈蚀。(二) 桥梁结构中经常需要凿槽、开洞、设置牛腿等,在常规计算中难以用准确的图式进行模拟计算,一般根据经验设置受力钢筋。研究表明,受力构件挖孔后,力流将产生绕射现象,在孔洞附近密集,产生巨大的应力集中。在长跨预应力连续梁中,经常在跨内根据截面内力需要截断钢束,设置锚头,而在锚固断面附近经常可以看到裂缝。因此,若处理不当,在这些结构的转角处或构件形状突变处、受力钢筋截断处容易出现裂缝。 实际工程中,次应力裂缝是产生荷载裂缝的最常见原因。次应力裂缝多属张拉、劈裂、剪切性质。次应力裂缝也是由荷载引起,仅是按常规一般不

5、计算,但随着现代计算手段的不断完善,次应力裂缝也是可以做到合理验算的。例如现在对预应力、徐变等产生的二次应力,不少平面杆系有限元程序均可正确计算,但在40年前却比较困难。在设计上,应注意避免结构突变(或断面突变),当不能回避时,应做局部处理,如转角处做圆角,突变处做成渐变过渡,同时加强构造配筋,转角处增配斜向钢筋,对于较大孔洞有条件时可在周边设置护边角钢。荷载裂缝特征依荷载不同而异呈现不同的特点。这类裂缝多出现在受拉区、受剪区或振动严重部位。但必须指出,如果受压区出现起皮或有沿受压方向的短裂缝,往往是结构达到承载力极限的标志,是结构破坏的前兆,其原因往往是截面尺寸偏小。根据结构不同受力方式,产

6、生的裂缝特征如下:(一) 中心受拉。裂缝贯穿构件横截面,间距大体相等,且垂直于受力方向。采用螺纹钢筋时,裂缝之间出现位于钢筋附近的次裂缝。 (二) 中心受压。沿构件出现平行于受力方向的短而密的平行裂缝。 (三) 受弯。弯矩最大截面附近从受拉区边沿开始出现与受拉方向垂直的裂缝,并逐渐向中和轴方向发展。采用螺纹钢筋时,裂缝间可见较短的次裂缝。当结构配筋较少时,裂缝少而宽,结构可能发生脆性破坏。(四) 大偏心受压。大偏心受压和受拉区配筋较少的小偏心受压构件,类似于受弯构件。(五) 小偏心受压。小偏心受压和受拉区配筋较多的大偏心受压构件,类似于中心受压构件。 (六)受剪。当箍筋太密时发生斜压破坏,沿梁

7、端腹部出现大于45度方向的斜裂缝;当箍筋适当时发生剪压破坏,沿梁端中下部出现约45度方向相互平行的斜裂缝。(七)受扭。构件一侧腹部先出现多条约45度方向斜裂缝,并向相邻面以螺旋方向展开。(八) 受冲切。沿柱头板内四侧发生约45度方向斜面拉裂,形成冲切面。 (九)局部受压。在局部受压区出现与压力方向大致平行的多条短裂缝。二、 温度变化引起的裂缝 混凝土具有热胀冷缩性质,当外部环境或结构内部温度发生变化,混凝土将发生变形,若变形遭到约束,则在结构内将产生应力,当应力超过混凝土抗拉强度时即产生温度裂缝。在某些大跨径桥梁中,温度应力可以达到甚至超出活载应力。温度裂缝区别其它裂缝最主要特征是将随温度变化

8、而扩张或合拢。引起温度变化主要因素有:(一)年温差。一年中四季温度不断变化,但变化相对缓慢,对桥梁结构的影响主要是导致桥梁的纵向位移,一般可通过桥面伸缩缝、支座位移或设置柔性墩等构造措施相协调,只有结构的位移受到限制时才会引起温度裂缝,例如拱桥、刚架桥等。我国年温差一般以一月和七月月平均温度的作为变化幅度。考虑到混凝土的蠕变特性,年温差内力计算时混凝土弹性模量应考虑折减。(二)日照。桥面板、主梁或桥墩侧面受太阳曝晒后,温度明显高于其它部位,温度梯度呈非线形分布。由于受到自身约束作用,导致局部拉应力较大,出现裂缝。日照和下述骤然降温是导致结构温度裂缝的最常见原因。(三)骤然降温。突降大雨、冷空气

9、侵袭、日落等可导致结构外表面温度突然下降,但因内部温度变化相对较慢而产生温度梯度。日照和骤然降温内力计算时可采用设计规范或参考实桥资料进行,混凝土弹性模量不考虑折减。 (四)水化热。出现在施工过程中,大体积混凝土(厚度超过2.0米)浇筑之后由于水泥水化放热,致使内部温度很高,内外温差太大,致使表面出现裂缝。施工中应根据实际情况,尽量选择水化热低的水泥品种,限制水泥单位用量,减少骨料入模温度,降低内外温差,并缓慢降温,必要时可采用循环冷却系统进行内部散热,或采用薄层连续浇筑以加快散热。 (五)蒸汽养护或冬季施工时施工措施不当,混凝土骤冷骤热,内外温度不均,易出现裂缝。(六)预制T梁之间横隔板安装

10、时,支座预埋钢板与调平钢板焊接时,若焊接措施不当,铁件附近混凝土容易烧伤开裂。采用电热张拉法张拉预应力构件时,预应力钢材温度可升高至350,混凝土构件也容易开裂。试验研究表明,由火灾等原因引起高温烧伤的混凝土强度随温度的升高而明显降低,钢筋与混凝土的粘结力随之下降,混凝土温度达到300后抗拉强度下降50%,抗压强度下降60%,光圆钢筋与混凝土的粘结力下降80%;由于受热,混凝土体内游离水大量蒸发也可产生急剧收缩。三、 收缩引起的裂缝在实际工程中,混凝土因收缩所引起的裂缝是最常见的。在混凝土收缩种类中,塑性收缩和缩水收缩(干缩)是发生混凝土体积变形的主要原因,另外还有自生收缩和炭化收缩。 塑性收

11、缩。发生在施工过程中、混凝土浇筑后45小时左右,此时水泥水化反应激烈,分子链逐渐形成,出现泌水和水分急剧蒸发,混凝土失水收缩,同时骨料因自重下沉,因此时混凝土尚未硬化,称为塑性收缩。塑性收缩所产生量级很大,可达1%左右。在骨料下沉过程中若受到钢筋阻挡,便形成沿钢筋方向的裂缝。在构件竖向变截面处如T梁、箱梁腹板与顶底板交接处,因硬化前沉实不均匀将发生表面的顺腹板方向裂缝。为减小混凝土塑性收缩,施工时应控制水灰比,避免过长时间的搅拌,下料不宜太快,振捣要密实,竖向变截面处宜分层浇筑。 缩水收缩(干缩)。混凝土结硬以后,随着表层水分逐步蒸发,湿度逐步降低,混凝土体积减小,称为缩水收缩(干缩)。因混凝

12、土表层水分损失快,内部损失慢,因此产生表面收缩大、内部收缩小的不均匀收缩,表面收缩变形受到内部混凝土的约束,致使表面混凝土承受拉力,当表面混凝土承受拉力超过其抗拉强度时,便产生收缩裂缝。混凝土硬化后收缩主要就是缩水收缩。如配筋率较大的构件(超过3%),钢筋对混凝土收缩的约束比较明显,混凝土表面容易出现龟裂裂纹。 自生收缩。自生收缩是混凝土在硬化过程中,水泥与水发生水化反应,这种收缩与外界湿度无关,且可以是正的(即收缩,如普通硅酸盐水泥混凝土),也可以是负的(即膨胀,如矿渣水泥混凝土与粉煤灰水泥混凝土)。炭化收缩。大气中的二氧化碳与水泥的水化物发生化学反应引起的收缩变形。炭化收缩只有在湿度50%

13、左右才能发生,且随二氧化碳的浓度的增加而加快。炭化收缩一般不做计算。 混凝土收缩裂缝的特点是大部分属表面裂缝,裂缝宽度较细,且纵横交错,成龟裂状,形状没有任何规律。研究表明,影响混凝土收缩裂缝的主要因素有: (一)水泥品种、标号及用量。矿渣水泥、快硬水泥、低热水泥混凝土收缩性较高,普通水泥、火山灰水泥、矾土水泥混凝土收缩性较低。另外水泥标号越低、单位体积用量越大、磨细度越大,则混凝土收缩越大,且发生收缩时间越长。例如,为了提高混凝土的强度,施工时经常采用强行增加水泥用量的做法,结果收缩应力明显加大。 (二)骨料品种。骨料中石英、石灰岩、白云岩、花岗岩、长石等吸水率较小、收缩性较低;而砂岩、板岩

14、、角闪岩等吸水率较大、收缩性较高。另外骨料粒径大收缩小,含水量大收缩越大。(三)水灰比。用水量越大,水灰比越高,混凝土收缩越大。(四)外掺剂。外掺剂保水性越好,则混凝土收缩越小。 (五)养护方法。良好的养护可加速混凝土的水化反应,获得较高的混凝土强度。养护时保持湿度越高、气温越低、养护时间越长,则混凝土收缩越小。蒸汽养护方式比自然养护方式混凝土收缩要小。(六)外界环境。大气中湿度小、空气干燥、温度高、风速大,则混凝土水分蒸发快,混凝土收缩越快。 7、振捣方式及时间。机械振捣方式比手工捣固方式混凝土收缩性要小。振捣时间应根据机械性能决定,一般以515s/次为宜。时间太短,振捣不密实,形成混凝土强

15、度不足或不均匀;时间太长,造成分层,粗骨料沉入底层,细骨料留在上层,强度不均匀,上层易发生收缩裂缝。对于温度和收缩引起的裂缝,增配构造钢筋可明显提高混凝土的抗裂性,尤其是薄壁结(壁厚2060cm)。构造上配筋宜优先采用小直径钢筋(814)、小间距布置(1015cm),全截面构造配筋率不宜低于0.3%,一般可采用0.3%0.5%。四、 地基础变形引起的裂缝 由于基础竖向不均匀沉降或水平方向位移,使结构中产生附加应力,超出混凝土结构的抗拉能力,导致结构开裂。基础不均匀沉降的主要原因有:(一)地质勘察精度不够、试验资料不准。在没有充分掌握地质情况就设计、施工,这是造成地基不均匀沉降的主要原因。比如丘

16、陵区或山岭区桥梁,勘察时钻孔间距太远,而地基岩面起伏又大,勘察报告不能充分反映实际地质情况。(二)地基地质差异太大。建造在山区沟谷的桥梁,河沟处的地质与山坡处变化较大,河沟中甚至存在软弱地基,地基土由于不同压缩性引起不均匀沉降。(三)结构荷载差异太大。在地质情况比较一致条件下,各部分基础荷载差异太大时,有可能引起不均匀沉降,例如高填土箱形涵洞中部比两边的荷载要大,中部的沉降就要比两边大,箱涵可能开裂。 (四)结构基础类型差别大。同一联桥梁中,混合使用不同基础如扩大基础和桩基础,或同时采用桩基础但桩径或桩长差别大时,或同时采用扩大基础但基底标高差异大时,也可能引起地基不均匀沉降。(五)分期建造的基础。在原有桥梁基础附近新建桥梁时,如分期修建的高速公路左右半幅桥梁,新建桥梁荷载或基础处理时引起地基土重新固结,均可能对原有桥梁基础造成较大沉降。(六)地基冻胀。在低于零度的条件下含水率较高的地基土因冰冻膨胀;

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 论文 > 毕业论文

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!