快速排序详析的设计.docx

上传人:王** 文档编号:841303 上传时间:2024-01-23 格式:DOCX 页数:8 大小:35.82KB
下载 相关 举报
快速排序详析的设计.docx_第1页
第1页 / 共8页
快速排序详析的设计.docx_第2页
第2页 / 共8页
快速排序详析的设计.docx_第3页
第3页 / 共8页
快速排序详析的设计.docx_第4页
第4页 / 共8页
快速排序详析的设计.docx_第5页
第5页 / 共8页
快速排序详析的设计.docx_第6页
第6页 / 共8页
快速排序详析的设计.docx_第7页
第7页 / 共8页
快速排序详析的设计.docx_第8页
第8页 / 共8页
亲,该文档总共8页,全部预览完了,如果喜欢就下载吧!
资源描述

《快速排序详析的设计.docx》由会员分享,可在线阅读,更多相关《快速排序详析的设计.docx(8页珍藏版)》请在优知文库上搜索。

1、通常对某个频点上的阻抗匹配可利用SMlTH圆图工具进行,两个器件肯定能搞定,即通过串+并联电感或电容即可实现由圆图上任一点到另一点的阻抗匹配,但这是单频的。而手机天线是双频的,对其中一个频点匹配,必然会对另一个频点造成影响,因此阻抗匹配只能是在两个频段上折衷.在某一个频点匹配很容易,但是双频以上就复杂点了。因为在900M完全匹配了,那么1800处就不会达到匹配,要算一个适合的匹配电路。最好用仿真软件或一个点匹配好了,在网络分析仪上的Sll参数下调整,因为双频的匹配点肯定离此处不会太远。,只有两个元件匹配是唯一的,但是pi型网络匹配,就有无数个解了。这时候需要仿真来挑,最好使用经验。仿真工具在实

2、际过程中几乎没什么用处。因为仿真工具是不知道你元件的模型的。你必须要输入实际元件的模型,也就是说各种分布参数,你的结果才可能与实际相符。一个实际电感器并不是简单用电感量能衡量的,应该是一个等效网络来模拟。本人通常只会用仿真工具做一些理论的研究。实际设计中,要充分明白Smith圆图的原理,然后用网络分析仪的圆图工具多调试。懂原理让你定性地知道要用什么件,多调是要让你熟悉你所用的元件会在实际的圆图上怎么移动。(由于分布参数及元件的频率响应特性的不同,实际件在圆图上的移动和你理论计算的移动会不同的)。双频的匹配的确是一个折衷的过程。你加一个件一定是有目的性的。以GSM.DCS双频来说,你如果想调GS

3、M而又不太想改变DCS,你就应该选择串连电容、并联电感的方式。同样如果想调DCS,你应该选择串电感、并电容。理论上需要2各件调一个频点,所以实际的手机或者移动终端通常按如下规律安排匹配电路:对于简单一些的,天线空间比较大,反射本来就较小的,采用Pai型(2并一串),如常规直板手机、常规翻盖机;稍微复杂些的采用双L型(2串2并):对于更匏杂的,采用L+Pai型(2串3并),比如用拉杆天线的手机。记住,匹配电路虽然能降低反射,但同时会引入损耗。有些情况,虽然驻波比好了,但天线系统的效率反而会降低。所以匹配电路的设计是有些忌讳的;比如在GSM.DCS手机中匹配电路中,串联电感一般不大于5.6nHo还

4、有,当天线的反射本身比较大,带宽不够,在smith图上看到各频带边界点离圆心的半径很大,一般加匹配是不能改善辐射的。天线的反射指标(VSWR,returnloss)在设计过程中一般只要作为参考。关键参数是传输性参数(如效率,增益等)。有人一味强调returnloss,一张口要一IOdB,驻波比要小于1.5,其实没有意义。我碰到这种人,我就开玩笑说,你只要反射指标好,我给你接一个50欧姆的匹配电阻好了,那样驻波小于1.1啊,至于你手机能不能工作我就不管了!SWR驻波比仅仅说明端口的匹配程度,即阻抗匹配程度。匹配好,SWR小,天线输入端口处反射回去的功率小。匹配不好,反射回去的功率就大。至于进入天

5、线的那部分功率是不是辐射了,你根本不清楚。天线的效率是辐射到空间的总功率与输入端口处的总功率之比。所以SWR好了,无法判断天线效率一定就高(拿一个50ohm的匹配电阻接上,SWR很好的,但有辐射吗?)o但是SWR不好了,反射的功率大,可以肯定天线的效率一定不会高。SWR好是天线效率好的必要条件而非充分条件,,SWR好并且辐射效率(radiationefficiency)高是天线效率高的充分必要条件。当SWR为理想值(1)时,端口理想匹配,此时天线效率就等于辐射效率。当今的手机,天线的空间压缩得越来越小,是牺牲天线的性能作为代价的。对于某些多频天线,甚至VSWR达到了6。以前大家比较多采用外置天

6、线,平均效率在50%算低的,现在50%以上的效率就算很好了!看一看市场上的手机,即使是名公司的,如NOkia等,也有效率低于20%的。有的手机(滑盖的啊,旋转的啊)甚至在某些频点的效率只有10%左右。见过几个手机内置天线的测试报告,天线效率基本都在3040%左右,当时觉得实在是够差的(比我设计的微带天线而言),现在看来还是凑合的了。不过实际工程中,好像都把由于SIl造成的损耗和匹配电路的损耗计在效率当中了,按天线原理,只有介质损耗(包括基板引起的和手机内磁铁引起的)和金属损耗(尽管很小)是在天线损耗中的,而回损和匹配电路的损耗不应该记入的。不过工程就是工程啊,这样容易测试啊。对了,再补充一句,

7、软件仿真在一定程度上是对工程有帮助的:当然,仿真的结果准确程度没法跟测试相比,但是通过参数扫描仿真获取的天线性能随参数变化趋势还是有用的,这比通过测试获取数据要快不少,尤其是对某些不常用的参数。“仿真工具在实际工程中没有什么用处”,是说在设计匹配电路时,更具体一点是指设计双频GSM.DCS手机天线匹配电路时。如果单独理解这句话,无疑是错的。事实上,我一直在用HFSS进行天线仿真,其结果也都是基于仿真结果的。对了,焊元器件真的是一件费劲的事,而且也有方法的,所谓熟能生巧嘛。大的公司可能给你专门配焊接员,那样你可能就只要说焊什么就可以了。然而,我们在此讨论的是如何有效地完成匹配电路的设计。注意有效

8、性!有效性包括所耗的时间以及选择元器件的准确性。如果没有实际动手的经验,只通过软件仿真得出一种匹配设计然而用到实际天线输入端。呵呵,我可以说,十有八九你的设计会不能用,甚至和你的想象大相径庭!实际设计中,还有一种情况你在仿真中是无法考虑的(除非你事先测量)。那就是,分布参数对于PIFA的影响。由于如今天线高度越来越小,而匹配电路要么在天线的下方(里面)要么在其下方(外面),反正很近,加入一个实际元件在实际中会引入分布参数的改变。尤其如果电路板排版不好,这种效应会明显一些。实际焊接时,甚至如果一个件焊得不太好,重新焊接一下,都会带来阻抗的变化。所以,PIFA的设计中,通常我们不采用匹配电路(或者

9、叫Oohm匹配)。这就要求你仔细调节优化你的天线。一般来说对现今的柔性电路板设计方案(FIeXfilm)比较容易做到,因为修改辐射片比较容易。对于用得比较多的另一种设计方案冲压金属片(stampingmetal),相对来说就比较难些了。一是硬度大,受工艺的限制不能充分理由所有空间,二是模具一旦成型要多次修改辐射片的设计也很困难。在匹配设计上仿真工具有没有很大的用处,没多少人是可以用仿真工具算出匹配来的。再说,有没有很大效果怎么衡量呢?工程上讲究的是快速,准确。为了仿真而仿真,没有实际意义。为了得到一个2、3、最多5个件的匹配你去建立电感、电容的模型,不太值的。还有,你如何考虑上面我提到的PIF

10、A匹配的分布参数的改变?前面我还说到一些匹配电路的忌讳,不是源于理论,完全源于实践。因为天线的设计是希望能提高它的辐射效率(总效率)!我没有成功地在1小时内通过仿真工具找到过准确的匹配电路(就说GSM.DCS)双频的吧,(实际中用视错法是可以的)。在处理RF系统的实际应用问题时,总会遇到一些非常困难的工作,对各部分级联电路的不同阻抗进行匹配就是其中之一。一般情况下,需要进行匹配的电路包括天线与低噪声放大器(LNA)之间的匹配、功率放大器输出(RFOUT)与天线之间的匹配、LNA/VC。输出与混频器输入之间的匹配。匹配的目的是为了保证信号或能量有效地从“信号源”传送到“负载”。在高频端,寄生元件

11、(比如连线上的电感、板层之间的电容和导体的电阻)对匹配网络具有明显的、不可预知的影响。频率在数十兆赫兹以上时,理论计算和仿真已经远远不能满足要求,为了得到适当的最终结果,还必须考虑在实验室中进行的RF测试、并进行适当调谐。需要用计算值确定电路的结构类型和相应的目标元件值。有很多种阻抗匹配的方法,包括计算机仿真:由于这类软件是为不同功能设计的而不只是用于阻抗匹配,所以使用起来比较复杂。设计者必须熟悉用正确的格式输入众多的数据。设计人员还需要具有从大量的输出结果中找到有用数据的技能。另外,除非计算机是专门为这个用途制造的,否则电路仿真软件不可能预装在计算机上。手工计算:这是一种极其繁琐的方法,因为

12、需要用到较长(“几公里”)的计算公式、并且被处理的数据多为应数。 经验:只有在RF领域工作过多年的人才能使用这种方法。总之,它只适合于资深的专家。 史密斯圆图:本文要重点讨论的内容。本文的主要目的是复习史密斯圆图的结构和背景知识,并且总结它在实际中的应用方法。讨论的主题包括参数的实际范例,比如找出匹配网络元件的数值。当然,史密斯圆图不仅能够为我们找出最大功率传输的匹配网络,还能帮助设计者优化噪声系数,确定品质因数的影响以及进行稳定性分析。图1阻抗和史密斯圆图基础基础知识在介绍史密斯圆图的使用之前,最好回顾一下RF环境下(大于IOoMHZ)IC连线的电磁波传播现象。这对RS-485传输线、PA和

13、天线之间的连接、LNA和下变频器/混频器之间的连接等应用都是有效的。大家都知道,要使信号源传送到负载的功率最大,信号源阻抗必须等于负载的共辄阻抗,即:RS+jXS=RL-jXL图2.表达式RS+jXS=RJjXL的等效图在这个条件下,从信号源到负载传输的能量最大。另外,为有效传输功率,满足这个条件可以避免能量从负载反射到信号源,尤其是在诸如视频传输、RF或微波网络的高频应用环境更是如此。史密斯圆图史密斯圆图是由很多圆周交织在一起的一个图。正确的使用它,可以在不作任何计算的前提下得到一个表面上看非常复杂的系统的匹配阻抗,唯一需要作的就是沿着圆周线读取并跟踪数据。史密斯圆图是反射系数(伽马,以符号

14、表示)的极座标图。反射系数也可以从数学上定义为单端口散射参数,即S11。史密斯圆图是通过验证阻抗匹配的负载产生的。这里我们不直接考虑阻抗,而是用反射系数L,反射系数可以反映负载的特性(如导纳、增益、跨导),在处理RF频率的问题时L更加有用。我们知道反射系数定义为反射波电压与入射波电压之比:图3,负载阻抗负载反射信号的强度取决于信号源阻抗与负载阻抗的失配程度。反射系数的表达式定义为:由于阻抗是复数,反射系数也是复数。为了减少未知参数的数量,可以固化一个经常出现并且在应用中经常使用的参数。这里ZO(特性阻抗)通常为常数并且是实数,是常用的归一化标准值,如50Q、75Q、100Q和600o于是我们可

15、以定义归一化的负载阻抗:据此,将反射系数的公式重新写为:从上式我们可以看到负载阻抗与其反射系数间的直接关系。但是这个关系式是一个更数,所以并不实用。我们可以把史密斯圆图当作上述方程的图形表示。为了建立圆图,方程必需重新整理以符合标准几何图形的形式(如圆或射线)。首先,由方程23求解出;并且令等式2.5的实部和虚部相等,得到两个独立的关系式:重新整理等式2.6,经过等式2.8至2.13得到最终的方程2.14。这个方程是在更平面(r,i)上、圆的参数方程(xa)2+(y-b)2=R2,它以r(r+1),0为圆心,半径为1/(1+r)。更多细节参见图4a。图4a.圆周上的点表示具有相同实部的阻抗。例

16、如,r=l的圆,以(0.5,0)为圆心,半径为0.5o它包含了代表反射零点的原点(0,0)(负载与特性阻抗相匹配)。以。0)为圆心、半径为1的圆代表负载短路。负载开路时,圆退化为一个点(以1,0为圆心,半径为零)。与此对应的是最大的反射系数1,即所有的入射波都被反射回来。在作史密斯圆图时,有一些需要注意的问题。下面是最重要的几个方面: 所有的圆周只有一个相同的,唯一的交点(L0)。 代表0。、也就是没有电阻(r=0)的圆是最大的圆。 无限大的电阻对应的圆退化为一个点(1,0) 实际中没有负的电阻,如果出现负阻值,有可能产生振荡。 选择一个对应于新电阻值的圆周就等于选择了一个新的电阻。作图经过等式2.15至2.18的变换,2.7式可以推导出另一个参数方程,方程2.19。同样,2.19也是在复平面(r,i)上的圆的参数方

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > IT计算机 > Web服务

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!