2022年光热储能行业研究报告.docx

上传人:王** 文档编号:79118 上传时间:2022-12-19 格式:DOCX 页数:11 大小:25.97KB
下载 相关 举报
2022年光热储能行业研究报告.docx_第1页
第1页 / 共11页
2022年光热储能行业研究报告.docx_第2页
第2页 / 共11页
2022年光热储能行业研究报告.docx_第3页
第3页 / 共11页
2022年光热储能行业研究报告.docx_第4页
第4页 / 共11页
2022年光热储能行业研究报告.docx_第5页
第5页 / 共11页
2022年光热储能行业研究报告.docx_第6页
第6页 / 共11页
2022年光热储能行业研究报告.docx_第7页
第7页 / 共11页
2022年光热储能行业研究报告.docx_第8页
第8页 / 共11页
2022年光热储能行业研究报告.docx_第9页
第9页 / 共11页
2022年光热储能行业研究报告.docx_第10页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《2022年光热储能行业研究报告.docx》由会员分享,可在线阅读,更多相关《2022年光热储能行业研究报告.docx(11页珍藏版)》请在优知文库上搜索。

1、2022年光热储能行业研究报告1、光热储能原理:以热能为核心1.1. 光伏&光热:同根生的两兄弟光伏发电和光热发电是太阳能发电最主要的两种形式。光伏发电是利用半导体界面的光生伏特效应,将光能直接转变为电能的技术;而光热发电则是通过利用大规模的集热镜和传统的蒸汽发电机热力循环做功,将光能先转化为热能,再转化为机械能,并最终产生电能的技术。光伏发电:光伏效应,光能直接转化为直流电。光伏发电系统的核心为光伏组件,其由多个单晶/多晶硅成分的光伏电池片串联构成。当太阳光照射在高纯硅上,使电子跃迁,形成电位差,光能直接转变为电能,产生直流电,并在逆变器、升压系统的作用下转变成高压交流电,最终实现用电、并网

2、功能。光热发电:经过“光能-热能-机械能-电能”这一转化过程,产生交流电。光热发电通过反射镜、聚光镜等聚热器将采集的太阳辐射热能汇聚到集热装置,加热装置内的导热油、熔融盐等传热介质,传热介质经过换热装置将水加热到高温高压蒸汽,进而驱动汽轮机带动发电机发电。除发电所用热源不同,其后端技术路径与火力发电并无较大差异,且产生电流为交流电,可直接实现并网。相较于光伏,我国光热发展相对滞后。2021年,我国光伏发电累计装机容量达306.4GW,同比+21%;光热发电累计装机容量仅538MW,同比持平。无论从装机总量还是装机增速来看,光伏发电均远高于光热发电,其主要原因是光热度电成本远高于光伏,在市场化的

3、条件下不具备竞争优势。1.2. 光热储能电站的四大系统组成光热发电大致可分为四个部分:集热系统、热传输系统、蓄热与热交换系统、发电系统。集热(聚光)系统:集热系统是光热系统的核心,其主要由聚光装置、接收器、跟踪机构等部件构成。而其中,聚光装置又为集热系统的核心组件,其在中央控制系统操控下,可追踪太阳位置,收集并向接收器反射最大量的阳光。聚光装置中的聚光镜、定日镜的反射率、焦点偏差等均能影响发电效率,对设计、生产、安装技术要求较高,过去被海外厂家垄断,而目前国产聚光镜效率可以达94%,与进口产品差距较小,具备国产替代潜力。吸热系统:吸热系统的功能为收集集热装置产生的热能,并利用导热介质将热能传送

4、给蓄热系统。储换热系统:蓄热装置通常由绝热材料包覆的蓄热器及价格低廉、比热容高的储热介质构成,其主要作用是白天将光热能储存,夜间通过热交换系统将热能释放,并通过发电机最终转化为电能,实现光伏电站的夜间发电及调峰调频。发电系统:光热发电系统与火力发电系统技术具有一致性,市场成熟度较高,二者均通过高质量过热蒸气推动汽轮机做功,从而将机械能转化为电能。1.3. 光热系统:槽式现为主流,塔式前景广阔按照光能聚集的方式,光热发电系统可分为塔式光热发电、槽式光热发电、碟式光热发电和线性菲涅尔式光热发电四类。塔式太阳能热发电系统:塔式系统是利用众多定日镜,将太阳热辐射反射到置于高塔顶部的集热器上,加热传热流

5、体(主要为熔融盐),高温传热流体通过蒸汽发生系统产生过热蒸汽推动汽轮发电机组发电。槽式太阳能热发电系统:槽式系统将多个槽型抛物面聚光集热器串并联排列,连续加热位于焦线位置的导热流体(主要为导热油),进而产生过热蒸汽驱动发电机组发电。碟式太阳能热发电系统:碟式系统利用驱动装置自动跟踪太阳,并用碟形聚光器将太阳光聚集到焦点处的吸热器上,最后通过斯特林循环或者布雷顿循环实现发电。由于其单体较小,常用于空间太阳能站。线性菲涅耳式太阳能热发电系统:菲涅尔系统使用多个跟踪太阳运动的条形平面镜代替抛面镜,将太阳辐射聚集到吸热管上,加热传热流体(通常为水/蒸汽),并通过热力循环进行发电。我国新签光热储能项目中

6、,塔式光热占比相对较高。槽式技术成熟较早,专利多为欧美垄断,目前历史装机量较大。截至2022年年初,全球光热电站项目中,槽式项目达82个,塔式项目仅31个。截至2021年,我国已建成光热项目中,塔式及槽式的占比分别为60%及28%o1.4. 我国光热储能电站发展历程中国光热发电“两沉两浮。1)蹒跚起步。中国光热发电初次尝试发生在十多年前的内蒙古鄂尔多斯,彼时政府拟筹划在当地建设一个50MW级光热示范电站,并于2006年召开的中德科技论坛上升级为中德合作项目,但受制于技术水平和发电成本等因素,项目逐渐被搁置。2)焰火重燃。2016年,国家能源局发布国家能源局关于建设太阳能热发电示范项目的通知,确

7、定了首批20个太阳能热发电示范项目,重燃市场对光热发电的热情,后续中控青海德令哈项目IoMW塔式、首航敦煌IoMW塔式等一系列项目拉动光热发展进入快车道。3)再陷低谷。随着18年底示范电价退坡机制的启动,19-20年光热项目建设再次陷入停滞。4)峰回路转。21年开始,随着国家“双碳”战略的逐步深入,光热储能具备比较优势,行业关注度逐渐回升,有望迎再次发展。2、光热储能电站将进入发展快车道2.1、 政策鼓励,光热储能绽放2021年,在经历了近两年的市场沉寂期后,中国光热发电行业迎来了承上启下的新元年。随着新能源装机规模不断扩张,光热发电“储发一体”优势凸显,与光伏、风电协同互补,在清洁供电的同时

8、保证电网的高效稳定。而国家21年以来也不断推出涵盖光热发电在内的一系列指导性意见,助力光热发电与风电、光伏的融合发展、联合运行,以及储热型太阳能热发电的发展。2.2、 光热储能电站成本已有显著下降技术成熟+国产替代=光热度电成本不断下降。近年来可再生能源发电成本不断下降,部分已低于传统化石能源发电成本,据国际可再生能源机构(IRENA)报告显示:2010-2020年,全球光伏电站发电平均成本降幅最大,达85%;光热发电系统其次,约为68%o在技术路径不断成熟、供应链不断完善以及核心器材国产替代的综合逻辑下,我国光热发电有望摆脱过去经济性不强的局面,叠加“风光储大基地”战略,度电成本在未来几年将

9、持续快速下降。根据国际经验,技术进步对光热储能电站成本降低的贡献率约42%,规模化的贡献率约37%,批量生产的贡献率约21%o根据可胜技术的数据,在理想情况下,由于规模化发展带来的电站总投资整体下降幅度可达18.4%27.6%o2.3、 光热储能电站:稳定发电为其核心优势新能源发电痛点在于波动较大,对电网负荷造成冲击在火力发电主导的传统电力系统中,电能的供应曲线相对稳定,但用电曲线在年内、日内存在多次峰谷波动。此前通过“了解需求侧、控制发电侧”的基本策略,预判用电高峰,预设发电出力计划,可较好解决电能供需错配问题。近年,随着可再生能源发电装机比例的提升给发电侧增添了诸多不可控、不稳定因素。风电

10、、光伏发电受制于自然条件因素,常具有波动性、随机性、反调峰性等特点,而其“极热无风、晚峰无光5”等弊病早已是“老生常谈”o据国家电网测算,2035年前,我国风电、光伏装机规模将分别达7亿、6.5亿千瓦,而所带来的日最大波动率预计分别达1.56亿、4.16亿千瓦,大大超出电网调节能力。我国电网迫切需要重新构建调峰体系,以具备应对新能源5亿千瓦左右的日功率波动的调节能力。储能系统具备平滑波动、削峰填谷能力,是新能源发电的重要稳定器储能技术是应对以风、光为主的新能源系统波动性、间歇性的有效技术。成熟的储能技术在发电侧可平滑风光电系统的波动,从而提高并网风电、光电系统的电能质量和稳定性,改善新能源发电

11、波动性等短板;在电网侧、用户侧,储能技术可很好地解决电能供需错配问题,从而减少电网短时承压过高或峰时用电不足带来的安全性、稳定性问题,并有效消纳可再生能源,避免“弃风弃光”现象。储能系统还可降低调峰调频能耗,并作为备用电力保障用电安全。传统火电调峰调频中,煤电机组为满足调峰能力,往往增加发电容量以具备应对尖峰负荷的能力,但这使得火电机组经常无法达到满发状态;同时火力发电对电网调频AGC信号响应具有滞后性,严重影响机组运行经济性。而储能系统充放电灵活、反应速度快,可大幅降低备用火力发电机组容量,并对调峰信号快速反应,大大提高了电网运行效率。此外,储能系统还可作为应对电力突发情况,满足紧急用电的备

12、用电源,具备一定的能源安全价值。储发一体带来的稳定发电为光热储能电站的最大优势相比于风电-抽水蓄能、光伏发电-蓄电池蓄电等储发分离系统,光热电站集二者于一身,可以像传统火力发电厂一样生产出电网友好型的可调度电力,以满足早晚高峰、尖峰时段等多情景下的用电需求;通过人为设置储能时长及发电机的负载功率,可实现24小时连续、稳定供电。我国2018年并网的3座商业化太阳能热发电示范项目中,太阳能热发电机组调峰深度最大可达80%;爬坡速度快,升降负荷速率可达每分钟3%-6%额定功率,冷态启动时间1小时左右、热态启动时间约25分钟,可100%参与电力平衡,部分替代化石类常规发电机组,对保障高比例可再生能源电

13、网的安全稳定运行具有重要价值。电力规划设计总院以目前新疆电网为例进行过模拟计算,假设建设100万千瓦500万千瓦不同规模的光热储能电站,可减少弃风弃光电量10%38%o清华大学能源互联网研究院研究结果显示,如果安装22GW光伏和7GW风电,青海电网在丰水期可连续3日全清洁能源供电(包括省内负荷及特高压外送河南);如果在此基础上配置4GW光热储能电站,青海省在丰水期可实现创纪录的连续30日全清洁能源供电。西北风光大基地场景,光热储能电站与之匹配度最高熔融盐是光热储能的首选传热储热介质。传热蓄热技术是光热发电关键技术之一,而传热介质的工作性能直接影响系统的效率和应用前景。目前槽式光热电站的工作温度

14、一般不超过400oC,塔式光热电站则在550oC以上,在这一温度区间,熔融盐相比水/水蒸气、液态金属等,具有较高的使用温度、高热稳定性、高比热容、高对流传热系数、低粘度、低饱和蒸汽压、低价格等一系列优点,是光热电站传热和储热介质的首选。据CSPP1.AZA光热发电网统计,在国内首批20个光热发电示范项目中,18个采用熔盐储能;已备案新增92个光热发电站清单中,86个将采用熔盐储能。相比于其他储能方式,熔融盐储能与大基地-光电系统四配度最高。光伏、光热基地多位于干旱且平坦的戈壁、荒漠,不具备开展抽水蓄能、空气压缩储能等项目的地质条件。大基地发电量较大且工作环境恶劣,对造价高、寿命短、温度敏感的电

15、化学储能形成严峻考验。相比之下,熔融盐储能既能满足储能容量大、储时长的要求,又具备经济性,并能在严酷的自然条件下安全平稳运行25-30年;其腐蚀性的劣势,则通过提高熔盐品质、使用防腐蚀材料等得到明显改善。2.4、 光热储能还可应用于供暖及工业蒸汽等场景光热制工业蒸汽,助力蒸汽价格与煤炭、天然气价格解耦。工业蒸汽通常是由燃烧煤炭、天然气加热液态水产生过热蒸汽制得,下游主要用于满足工业企业生产的加热需要,其一典型应用是在稠油开采领域的应用。稠油胶质沥青含量高、粘度大、流动性差,需通过蒸汽热采以获得较好的经济效益。而在近年化石能源价格大幅上涨及优化能源结构、降低能耗、减少碳排放的政策背景下,燃烧化石

16、能源制备工业蒸汽逐渐丧失成本优势,使用太阳能集热装置来产生蒸汽的太阳能EOR具备广阔前景。太阳能EOR的核心在于利用光热发电的集热技术实时产生过热水蒸气或将热能储存在蓄热系统备用,通过此种方式,可大幅减少稠油开采成本并减少开采过程中的碳排放。对于光热电站运营商,其聚光产生的热能或无需转化为电能并网售卖,而是仅通过蒸汽发生系统产生工业蒸汽直接售卖给消毒、纺织企业,减少了发电过程中大量的能耗损失,增加光热收入。以光供暖、以光助农,光热发电不断开发新型应用场景。以光热大循环为主体,将产生的热能储存起来并在温度较低时释放,便可用于绿色小镇的清洁供暖及恒温蔬菜大棚冬日的温度保持。近年国家不断推进北方她区清洁供暖,打响关于冬季供暖的“蓝天保卫战”,光热供暖在能源价格上涨和储能问题解决的推动下,经济性、实用性凸显;而其应用在恒温蔬菜大棚供暖,可大幅降低菜农冬日种植蔬菜成本。3、光热储能产业链梳理3.1、 光热储能产业链梳理

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 研究报告 > 新能源

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!