《第8章多重比较方差检验.ppt》由会员分享,可在线阅读,更多相关《第8章多重比较方差检验.ppt(32页珍藏版)》请在优知文库上搜索。
1、8.2.1 效应差的置信区间 如果方差分析的结果因子A显著,则等于说有充分理由认为因子A各水平的效应不全相同,但这并不是说它们中一定没有相同的。就指定的一对水平Ai与Aj,我们可通过求i-j的区间估计来进行比较。由于 ,故由此给出i-j的置信水平为1-的置信区间为 (8.2.1)其中 是 2的无偏估计。这里的置信区间与第六章中的两样本的t区间基本一致,区别在于这里 2的估计使用了全部样本而不仅仅是两个水平Ai,Aj下的观测值。2.11(,()ijijijyyNmm.()()()11()ijijeeijeyytfSmmf.11221111()(),()()ijeijeijijyytfyytfmm
2、mm2/eeSf例8.2.1 继续例8.1.2,fe=21,取0.05,则t1-/2(fe)=t0.975(21)=2.0796,于是可算出各个置信区间为 可见第一个区间在0的左边,所以我们可以概率95%断言认为1 小于2,其它二个区间包含0点,虽然从点估计角度看水平均值估计有差别,但这种差异在0.05水平上是不显著的。0.9751 1(21)38.11438 8t121323:48.875038.1143 86.9893,10.7607:2038.1143 58.11433,18.1143:28.875038.1143 9.2393,66.9893 1343.6171 36.65548.2.
3、2 多重比较问题 对每一组(i,j),(8.2.1)给出的区间的置信水平都是1,但对多个这样的区间,要求其同时成立,其联合置信水平就不再是1 了。譬如,设E1,Ek是k个随机事件,且有 P(Ei)=1,i=1,k,则其同时发生的概率 这说明它们同时发生的概率可能比1 小很多。为了使它们同时发生的概率不低于1,一个办法是把每个事件发生的概率提高到1/k.这将导致每个置信区间过长,联合置信区间的精度很差,一般人们不采用这种方法。111()1()1()1kkkiiiiiiPEPEP Ek 在方差分析中,如果经过F检验拒绝原假设,表明因子A是显著的,即r个水平对应的水平均值不全相等,此时,我们还需要进
4、一步确认哪些水平均值间是确有差异的,哪些水平均值间无显著差异。同时比较任意两个水平均值间有无明显差异的问题称为多重比较,多重比较即要以显著性水平同时检验如下r(r1)/2个假设:(8.2.2)0:,1,ijijHijr 直观地看,当H0ij成立时,不应过大,因此,关于假设(8.2.2)的拒绝域应有如下形式 诸临界值应在(8.2.2)成立时由P(W)=确定。下面分重复数相等和不等分别介绍临界值的确定。.1|ijijij rWyyc .|ijyy 8.2.3 重复数相等场合的T法 在重复数相等时,由对称性自然可以要求诸cij相等,记为c.记 ,则由给定条件不难有 2/eeSf.()/iiieytt
5、 fm 于是当(8.2.2)成立时,1=r=,可推出 其中 ,称为t化极差统计量,其分布可由随机模拟方法得到。于是 ,其中q1(r,fe)表示q(r,fe)的1 分位数,其值在附表8中给出。()(,)/eP WP q r fmc.()()(,)maxmin/jieijyyq r fmm1(,)/ecqr fm 重复数相同时多重比较可总结如下:对给定的的显著性水平,查多重比较的分位数q(r,fe)表,计算 ,比较诸 与c的大小,若 则认为水平Ai与水平Aj间有显著差异,反之,则认为水平Ai与水平Aj间无明显差别。这一方法最早由Turkey提出,因此称为T法。1(,)/ecqr fm.|ijyy.
6、|ijyyc 例8.2.2 继续例8.1.2,若取=0.05,则查表知q1-0.05(3,21)=3.57,而 。所以 ,认为1与2有显著差别 ,认为1与3无显著差别 ,认为2与3有显著差别 这说明:1与3之间无显著差别,而它们与2之间都有显著差异。36.65543.57 36.6554/846.2659c 1.3.|2046.2659yy2.3.|46.87546.2659yy1.2.|48.87546.2659yy在重复数不等时,若假设(8.2.2)成立,则 或 从而可以要求 ,在此要求下可推出.()()11ijijeijyytt fmm2.2()(1,)11()ijijeijyyFFfm
7、m11ijijccmm21()(max(/)ij rijP WPFc 可以证明 ,从而 亦即1max(1,)1ij rijeFF rfr 21(1,)(/)1eFrfcr2111(1)(1,)()ijeijcrFrfmm 例8.2.3 在例8.1.4中,我们指出包装方式对食品销量有明显的影响,此处r=4,fe=6,,若取=0.05,则F0.95(3,6)=4.76。注意到m1=m4=2,m2=m3=3,故27.671213243414233 4.76(1/2 1/3)7.679.63 4.76(1/2 1/2)7.6710.53 4.76(1/3 1/3)7.678.5cccccc 由于 这说
8、明A1,A2,A3间无显著差异,A1,A2与A4有显著差异,但 A4与A3 的差异却尚未达到显著水平。综合上述,包装A4销售量最佳。1.2.121.3.131.4.142.3.232.4.243.4.34|2,|4,|12|6,|14,|8yycyycyycyycyycyyc P387 3、4Bonferroni法法SNK法法Tukey法法 在进行方差分析时要求r个方差相等,这称为方差齐性。理论研究表明,当正态性假定不满足时对F检验影响较小,即F检验对正态性的偏离具有一定的稳健性,而F检验对方差齐性的偏离较为敏感。所以r个方差的齐性检验就显得十分必要。所谓方差齐性检验是对如下一对假设作出检验:
9、(8.3.1)22220121riHvsH:诸不全相等 很多统计学家提出了一些很好的检验方法,这里介绍几个最常用的检验,它们是:Hartley检验,仅适用于样本量相等的场合;Bartlett检验,可用于样本量相等或不等 的场合,但是每个样本量不得低于5;修正的Bartlett检验,在样本量较小或较 大、相等或不等场合均可使用。当各水平下试验重复次数相等时,即m1=m2=mr=m,Hartley提出检验方差相等的检验统计量:(8.3.2)这个统计量的分布无明显的表达式,但在诸方差相等条件下,可通过随机模拟方法获得H分布的分位数,该分布依赖于水平数r 和样本方差的自由度f=m1,因此该分布可记为H
10、(r,f),其分位数表列于附表10上。2221222212max,min,rrsssHsss 直观上看,当H0成立,即诸方差相等(12=22=r2)时,H的值应接近于1,当H的值较大时,诸方差间的差异就大,H愈大,诸方差间的差异就愈大,这时应拒绝(8.3.1)中的H0。由此可知,对给定的显著性水平,检验H0的拒绝域为 W=H H1(r,f)(8.3.3)其中H1(r,f)为H分布的1 分位数。例8.3.1 有四种不同牌号的铁锈防护剂(简称防锈剂),现要比较其防锈能力。数据见表8.3.1。这是一个重复次数相等的单因子试验。我们考虑用方差分析方法对之进行比较分析,为此,首先要进行方差齐性检验。本例
11、中,四个样本方差可由表8.3.1中诸Qi求出,即 由此可得统计量H的值 在=0.05时,由附表10查得H0.95(4,9)=6.31,由于H d (8.3.4)Bartlett证明了,检验的拒绝域为 W=B 1-2(r-1)(8.3.8)考虑到这里2分布是近似分布,在诸样本量mi均不小于5时使用上述检验是适当的。例8.3.2 为研究各产地的绿茶的叶酸含量是否有显著差异,特选四个产地绿茶,其中A1制作了7个样品,A2制作了5个样品,A3与A4各制作了6个样品,共有24个样品,按随机次序测试其叶酸含量,测试结果如表8.3.3所示。为能进行方差分析,首先要进行方差齐性检验,从表8.3.3中数据可求得
12、s12=2.14,s22=2.83,s32=2.41,s42=1.12,再从表8.3.4上查得MSe=2.09,由(8.3.6),可求得 再由(8.3.7),还可求得Bartlett检验统计量的值 对给定的显著性水平=0.05,查表知0.952(41)=7.815。由于B7.815,故应保留原假设H0,即可认为诸水平下的方差间无显著差异。11111111.08563(4 1)645520C 120 ln2.096 ln2.144 ln2.835 ln2.41 5 ln1.120.97 01.0856B 针对样本量低于5时不能使用Bartlett检验的缺点,Box提出修正的Bartlett检验统
13、计量 (8.3.9)其中B与C如(8.3.7)与(8.3.6)所示,且21()f BCBf ABC 2122211,(1)22/frfrfACCf 在原假设H0:12=22=r2成立下,Box还证明了统计量 的近似分布是F分布F(f1,f2),对给定的显著性水平,该检验的拒绝域为 (8.3.10)其中f2的值可能不是整数,这时可通过对F分布的分位数表施行内插法得到分位数。B112(,)WBFff 例8.3.3 对例8.3.2中的绿茶叶酸含量的数据,我们用修正的Bartlett检验再一次对等方差性作出检验。在例8.3.2中已求得:C=1.0856,B=0.970,还可求得:对给定的显著性水平=0.05,在F分布的分位数表上可查得 F0.95(3,682.4)=F0.95(3,)=2.60 由于 2.60,故保留原假设H0,即认为四个水平下的方差间无显著差异。B1224 134 1682.4(1.08561)682.4743.92 1.08562/682.4682.4 0.970 1.08560.3223(743.90.970 1.0856)ffCAB P394 2、5方差齐性检验方差齐性检验1.Bartlett检验法2.Levene等3.最大方差与最小方差之比3,初步认为方差齐同。