第4章贪心算法名师编辑PPT课件.ppt

上传人:王** 文档编号:595874 上传时间:2023-12-08 格式:PPT 页数:57 大小:246KB
下载 相关 举报
第4章贪心算法名师编辑PPT课件.ppt_第1页
第1页 / 共57页
第4章贪心算法名师编辑PPT课件.ppt_第2页
第2页 / 共57页
第4章贪心算法名师编辑PPT课件.ppt_第3页
第3页 / 共57页
第4章贪心算法名师编辑PPT课件.ppt_第4页
第4页 / 共57页
第4章贪心算法名师编辑PPT课件.ppt_第5页
第5页 / 共57页
第4章贪心算法名师编辑PPT课件.ppt_第6页
第6页 / 共57页
第4章贪心算法名师编辑PPT课件.ppt_第7页
第7页 / 共57页
第4章贪心算法名师编辑PPT课件.ppt_第8页
第8页 / 共57页
第4章贪心算法名师编辑PPT课件.ppt_第9页
第9页 / 共57页
第4章贪心算法名师编辑PPT课件.ppt_第10页
第10页 / 共57页
亲,该文档总共57页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《第4章贪心算法名师编辑PPT课件.ppt》由会员分享,可在线阅读,更多相关《第4章贪心算法名师编辑PPT课件.ppt(57页珍藏版)》请在优知文库上搜索。

1、1第4章 贪心算法2第4章 贪心算法 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。3第4章 贪心算法本章主要知识点:4.1 活动安排问题 4.2 贪心算法的基本要素 4.3 最优装载 4.4 哈夫曼编码 4.5 单源最短路径 4.6 最小生成树 4.7 多机调度问题

2、 4.8 贪心算法的理论基础44.1 活动安排问题 活动安排问题就是要在所给的活动集合中选出最大的相容活动子集合,是可以用贪心算法有效求解的很好例子。该问题要求高效地安排一系列争用某一公共资源的活动。贪心算法提供了一个简单、漂亮的方法使得尽可能多的活动能兼容地使用公共资源。54.1 活动安排问题 设有n个活动的集合E=1,2,n,其中每个活动都要求使用同一资源,如演讲会场等,而在同一时间内只有一个活动能使用这一资源。每个活动i都有一个要求使用该资源的起始时间si和一个结束时间fi,且si fi。如果选择了活动i,则它在半开时间区间si,fi)内占用资源。若区间si,fi)与区间sj,fj)不相

3、交,则称活动i与活动j是相容的。也就是说,当sifj或sjfi时,活动i与活动j相容。64.1 活动安排问题在下面所给出的解活动安排问题的贪心算法greedySelectorgreedySelector:public static int greedySelector(int s,int f,boolean a)int n=s.length-1;a1=true;int j=1;int count=1;for(int i=2;i=fj)ai=true;j=i;count+;else ai=false;return count;各活动的起始时间和结各活动的起始时间和结束时间存储于数组束时间存储于数

4、组s s和和f f中且按结束时间的非减中且按结束时间的非减序排列序排列 74.1 活动安排问题 由于输入的活动以其完成时间的非减序非减序排列,所以算法greedySelectorgreedySelector每次总是选择具有最早完成时具有最早完成时间间的相容活动加入集合A中。直观上,按这种方法选择相容活动为未安排活动留下尽可能多的时间。也就是说,该算法的贪心选择的意义是使剩余的可安排时使剩余的可安排时间段极大化间段极大化,以便安排尽可能多的相容活动。算法greedySelectorgreedySelector的效率极高。当输入的活动已按结束时间的非减序排列,算法只需O(n)O(n)的时间安排n个

5、活动,使最多的活动能相容地使用公共资源。如果所给出的活动未按非减序排列,可以用O(nlogn)O(nlogn)的时间重排。84.1 活动安排问题 例:例:设待安排的11个活动的开始时间和结束时间按结束时间的非减序排列如下:i12345678910 11Si 130535688212fi45678910 11 12 13 1494.1 活动安排问题 算法算法greedySelector greedySelector 的的计算过程计算过程如左图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。104.1 活动安排问题 若被检

6、查的活动i的开始时间Si小于最近选择的活动j的结束时间fi,则不选择活动i,否则选择活动i加入集合A中。贪心算法并不总能求得问题的整体最优解整体最优解。但对于活动安排问题,贪心算法greedySelector却总能求得的整体最优解,即它最终所确定的相容活动集合A的规模最大。这个结论可以用数学归纳法证明。114.2 贪心算法的基本要素 本节着重讨论可以用贪心算法求解的问题的一般特征。对于一个具体的问题,怎么知道是否可用贪心算法解此问题,以及能否得到问题的最优解呢?这个问题很难给予肯定的回答。但是,从许多可以用贪心算法求解的问题中看到这类问题一般具有2个重要的性质:贪心选择性质贪心选择性质和最优子

7、结最优子结构性质构性质。124.2 贪心算法的基本要素1.1.贪心选择性质贪心选择性质 所谓贪心选择性质贪心选择性质是指所求问题的整体最优解整体最优解可以通过一系列局部最优局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。动态规划算法通常以自底向上自底向上的方式解各子问题,而贪心算法则通常以自顶向下自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。134.2 贪心算法的基本要素2.2.

8、最优子结构性质最优子结构性质 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。144.2 贪心算法的基本要素3.贪心算法与动态规划算法的差异 贪心算法和动态规划算法都要求问题具有最优子结构性质,这是2类算法的一个共同点。但是,对于具有最优子结构最优子结构的问题应该选用贪心算法还是动态规划算法求解?是否能用动态规划算法求解的问题也能用贪心算法求解?下面研究2个经典的组合优化问题组合优化问题,并以此说明贪心算法与动态规划算法的主要差别。154.2 贪心算法的基本要素 0-10-1背包问题:背包

9、问题:给定n种物品和一个背包。物品i的重量是Wi,其价值为Vi,背包的容量为C。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?在选择装入背包的物品时,对每种物品在选择装入背包的物品时,对每种物品i i只有只有2 2种选择,即种选择,即装入背包或不装入背包。不能将物品装入背包或不装入背包。不能将物品i i装入背包多次,也不能只装入背包多次,也不能只装入部分的物品装入部分的物品i i。164.2 贪心算法的基本要素 背包问题:背包问题:与0-1背包问题类似,所不同的是在选择物品i装入背包时,可以选择物品可以选择物品i i的一部分的一部分,而不一定要全部装入背包,1in。这2类问题都具有

10、最优子结构最优子结构性质,极为相似,但背包问题可以用贪心算法求解,而0-1背包问题却不能用贪心算法求解。174.2 贪心算法的基本要素用贪心算法解背包问题的基本步骤:首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包。依此策略一直地进行下去,直到背包装满为止。具体算法可描述如下页:184.2 贪心算法的基本要素public static float knapsack(float c,float w,float v,fl

11、oat x)int n=v.length;Element d=new Element n;for(int i=0;i n;i+)di=new Element(wi,vi,i);MergeSort.mergeSort(d);int i;float opt=0;for(i=0;in;i+)xi=0;for(i=0;ic)break;xdi.i=1;opt+=di.v;c-=di.w;if(in)xdi.i=c/di.w;opt+=xdi.i*di.v;return opt;算法算法knapsackknapsack的的主要计算时间在于将主要计算时间在于将各种物品依其单位重各种物品依其单位重量的价值从

12、大到小排量的价值从大到小排序。因此,算法的计序。因此,算法的计算时间上界为算时间上界为O O(nlognnlogn)。当然,)。当然,为了证明算法的正确为了证明算法的正确性,还必须证明背包性,还必须证明背包问题具有贪心选择性问题具有贪心选择性质质。194.2 贪心算法的基本要素 对于0-10-1背包问题背包问题,贪心选择之所以不能得到最优解是因为在这种情况下,它无法保证最终能将背包装满,部分闲置的背包空间使每公斤背包空间的价值降低了。事实上,在考虑0-1背包问题时,应比较选择该物品和不选择该物品所导致的最终方案,然后再作出最好选择。由此就导出许多互相重叠的子问题。这正是该问题可用动态规划动态规

13、划算法算法求解的另一重要特征。实际上也是如此,动态规划算法的确可以有效地解0-1背包问题。204.3 最优装载 有一批集装箱要装上一艘载重量为c的轮船。其中集装箱i的重量为Wi。最优装载问题要求确定在装载体积不受限制的情况下,将尽可能多的集装箱装上轮船。1.1.算法描述算法描述最优装载问题可用贪心算法求解。采用重量最轻者先装的贪心选择策略,可产生最优装载问题的最优解。具体算法描述如下页。214.3 最优装载void loading(int x,Type w,Type c,int n)int*t=new intn+1;Sort.(w,t,n);for(int i=1;i=n;i+)xi=0;fo

14、r(int i=1;i=n&wti=c;i+)xti=1;c-=wti;224.3 最优装载2.2.贪心选择性质贪心选择性质 可以证明最优装载问题具有贪心选择性质。3.3.最优子结构性质最优子结构性质最优装载问题具有最优子结构性质。由最优装载问题的贪心选择性质和最优子结构性质,容易证明算法loadingloading的正确性。算法loadingloading的主要计算量在于将集装箱依其重量从小到大排序,故算法所需的计算时间为 O(nlogn)O(nlogn)。234.4 哈夫曼编码哈夫曼编码哈夫曼编码是广泛地用于数据文件压缩的十分有效的编码方法。其压缩率通常在20%90%之间。哈夫曼编码算法用

15、字符在文件中出现的频率表来建立一个用0,1串表示各字符的最优表示方式。给出现频率高的字符较短的编码,出现频率较低的字符以较长的编码,可以大大缩短总码长。1.1.前缀码前缀码对每一个字符规定一个0,1串作为其代码,并要求任一字符的代码都不是其他字符代码的前缀。这种编码称为前缀码前缀码。244.4 哈夫曼编码 编码的前缀性质可以使译码方法非常简单。表示最优前缀码最优前缀码的二叉树总是一棵完全二叉树完全二叉树,即树中任一结点都有2个儿子结点。平均码长平均码长定义为:使平均码长达到最小的前缀码编码方案称为给定编码字符集C的最优前缀码最优前缀码。)()()(cdcfTBTCc 254.4 哈夫曼编码2.

16、2.构造哈夫曼编码构造哈夫曼编码哈夫曼提出构造最优前缀码的贪心算法,由此产生的编码方案称为哈夫曼编码哈夫曼编码。哈夫曼算法以自底向上的方式构造表示最优前缀码的二叉树T。算法以|C|个叶结点开始,执行|C|1次的“合并”运算后产生最终所要求的树T。264.4 哈夫曼编码 在书上给出的算法huffmanTree中,编码字符集中每一字符c的频率是f(c)。以以f f为键值的优先队列为键值的优先队列Q Q用在贪心选择贪心选择时有效地确定算法当前要合并的2棵具有最小频率的树。一旦2棵具有最小频率的树合并后,产生一棵新的树,其频率为合并的2棵树的频率之和,并将新树插入优先队列Q。经过n1次的合并后,优先队列中只剩下一棵树,即所要求的树T。算法huffmanTree用最小堆实现优先队列Q。初始化优先队列需要O(n)计算时间,由于最小堆的removeMin和put运算均需O(logn)时间,n1次的合并总共需要O(nlogn)计算时间。因此,关于n个字符的哈夫曼算法的计算时间计算时间为O(nlogn)。274.4 哈夫曼编码3.3.哈夫曼算法的正确性哈夫曼算法的正确性要证明哈夫曼算法的正确性,只要证明

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!