《The Establishment for The Buildings Energy-efficiency Large System in Sanjiangyuan Area with Analytic Hierarchy Process.docx》由会员分享,可在线阅读,更多相关《The Establishment for The Buildings Energy-efficiency Large System in Sanjiangyuan Area with Analytic Hierarchy Process.docx(5页珍藏版)》请在优知文库上搜索。
1、TheEstablishmentforTheBuildingsEnergy-efficiencyLargeSysteminSanjiangyuanAreawithAnalyticHierarchyProcessKewords:QinghaiTibetPlateau;Sanjiangyuan;BuildingsEnergy-efficiency;EstablishSystemAbstract:Itisfoundthatatheoreticalsystemforenergy-efficientsolutionsofbuildingsinSanjiangyuanareaisdifficulttoes
2、tablishduetothecomplexityinquantitativeanalysisonsomefactors.Therefore,basedonapreliminaryanalysisonthecomplexnatureofthedecisionmakingprocessofbuildingenergyefficiencyinthree-riversourcearea,andinfluentialfactorsontheissue,itisrecognizedthatAnalyticHierarchyProcess(AHP)isanefficientapproachforanaly
3、zinganddiscussingtheestablishmentofthesystem,andthusaguidelinecanbesetupforsomepilotprojects.!.DefineaHierarchicalStructureOurresearchteamwantstooptimizetheoverallbenefitsofthesolutiontobuildingenergyefficiencyinthree-riversourceareabyanalyzingdifferentalternatives.Thegoalofourstudyistomakeefficient
4、useofcleanenergyandoptimizetheoverallbenefits.Inordertoachievethegoal,thethreemaincriteriaforassessingtheoutcomeshouldbeconsideredareeconomicbenefit,socialbenefitandenvironmentalbenefit,amongwhichenvironmentalbenefitisthemostimportantcriterion.Afterfurtherdiscussion,wethinkthatthethreemaincriteriash
5、ouldbeclassifiedundersomemoredetailedcriteriaincludingdirecteconomicbenefit,indirecteconomicbenefit,energyresources,energywithadvantage,minimizationofpollution,improvementofurbanlandscape,recognitionofresidentsinthearea.Itisassumedthatonlythecriteriamentionedaboveareanalyzed,andwiththesecriteriasome
6、specificalternativesforimprovingbuildingenergyefficiencycanbeproposed.Theresearchprovidestwoalternatives,includingcleanenergy(solarenergyandwindenergy)andinsulationstructure.Itisevidentthatthesetwoalternativesarerelevanttoallthecriteriamentioned,sotheyarefactorsatalternativelevel,thelowestlevelofthe
7、hierarchicalstructure.Thefactorsareputatdifferentlevelsfollowingtheinterrelationshipsbetweenthem,andlinkedbylines.Inordertoassistquantitativeanalysis,fromthetoptothebottomthelevelsaremarkedA GoalwithA,B,C,D,etc.Andfromlefttorightdifferentfactorsaremarkedwith1,2,3,4,etc(Fig.l).Clraa EMrXy(Dl)BCriteri
8、aTbtDtMSBWnaUtoaervc*ir(Dl)CCriteriaDAlternativesFig.1HierarchicalStructure2.ComparisonMatrixandEvaluationofExpertsComparisonMatrixescanbemadebasedonthehierarchicalstructure.Themethodofmakingacomparisonmatrixistoputeachfactorwithsubordinatefactors(criteria)inthetopleftcornerasthefirstfactorinamatrix
9、,anditssubordinatefactorsareputinthefirstlineandthefirstcolumnfollowingtheirnumbers111.Themethodforevaluatingthecriteriaistoconsult13expertsbycorrespondence.Theyareaskedtodeterminethelevelofimportanceofthesefactorsbycomparetheminpairs,andthelevelofimportancescoredfrom1to9(table2-1).Table2-1Scalesofi
10、mportanceScalesofDescriptionimportance135792t4,6,8reciprocalThecomparedtwofactorsareequallyimportantOnefactorisalittlemoreimportantthantheotherOnefactorisobviouslymoreimportantthantheotherOnefactorismuchmoreimportantthantheotherOnefactorisextre三lymoreimportantthantheotherBetweenthescalesaboveIfthera
11、tiobetweenfactoriandfactorjisalj,ratiobetweenfactorjandfactoriisajbequaledtolalj.Afterconsultingexperts,comparisonmatrixescanbemade(table2-2).ABlB2B3Table2-2comparisonmatrixesC5C6BlClC2B2C3C4B3Bl11/31/7Cl11/3C317C515B211/5C21C41C61B31ClDlD2C2DlD2C3DlD2C4DlD2Dl15Dl11/3Dl11/8Dl15D21D21D21D21C5DlD2C6Dl
12、D2Dl11/7Dl11/5D21D213.SingleHierarchicalArrangementandTest(Calculationofweightvector)Accordingtotheresultsofcomparisonmatrixesfromtheexperts,Rankingscanbemadewithsomemathematicmethods.Singlehierarchicalarrangementistocalculatetherelativeweightofeachfactorcomparedwithitscriteria,soitsnatureistocalcul
13、ateweightvectoroInthisresearchsummethodisusedtocalculateweightvectoroSummethodmeansthatinaconsistentcomparisonmatrix,theresultofnormalizationisweightvector,whileinaninconsistentcomparisonmatrix,theresultofnormalizationisalmostequaledtoitsvector,andtheweightisthearithmeticaveragevalueofthevectorofthe
14、totalncolumns.TheequationisasEq.1.7b,Jt=IAftertherankingsforeachlevel,theCOmPariSOnmatrixesshouldbetestedwiththeirlevelofconsistency.AmatrixisIogicallyjustifiedonlyifitpassesthetest,afterwhichtheresultofamatrixcanbeanalyzed.Theproceduresofthetestforevaluatingtheconsistencyareasfollowing121:Step1Calc
15、ulatetheconsistencyindex(C.I.)ofeachmatrix.Eq.2.C. = 2zi-1(2)Step2Findouttherandomindex(R.I.)ofeachmatrixbylookinguptable3-1.Table3-1RandomIndexOrderofMatrix12345678R.I.OO0.580.901.120.241.321.41Orderof9101112131415MatrixR.I.1.451.491.521.541.561.581.59Step3Calculateconsistencyratio(C.R.),basedonwhich,makejudgement.Eq.3.(3)If