《汽车新能源与节能技术替代能源汽车课程教案.docx》由会员分享,可在线阅读,更多相关《汽车新能源与节能技术替代能源汽车课程教案.docx(23页珍藏版)》请在优知文库上搜索。
1、汽车新能源与节能技术替代能源汽车课程教案教学目的和要求:理解天然气、液化石油气、氢气和醇类燃料的理化特性、天然气汽车和液化石油气汽车的主要类型、主要组成部分的结构及基本工作原理,醇类燃料在发动机上的燃用方式、醇类燃料在发动机上的参数选择、醇类燃料在汽车上的应用及面临的技术难题,氢的制取与储存,电动汽车的发展优势以及所面临的问题、蓄电池的主要性能特点、电动机的主要特性以及电动汽车基本结构及其工作原理,燃料电池电动汽车的组成及主要性能特点。掌握天然气汽车、液化石油气汽车、醇类燃料汽车、氢燃料汽车的性能评价。本章重点:天然气汽车和液化石油气汽车主要组成部分的结构及基本工作原理,天然气、液化石油气、氢
2、气和醇类燃料的理化特性有其对汽车性能的影响,掌握天然气汽车、液化石油气汽车、醇类燃料汽车、氢燃料汽车的性能评价。本章难点:电控喷气系统的组成及工作原理,液化石油气汽车蒸发调压器的结构及工作原理、不同工况下混合气浓度的实现,电动汽车基本结构及其工作原理,混合动力汽车的主要工作过程。教学时数:10学时教学内容要点:第一节天然气汽车一、 天然气汽车概述天然气汽车主要成份是甲烷,其主要理化特性见表2-1二、 天然气汽车的类型(-)按储存天然气的压力和形态分类1、压缩天然气汽车天然气以高压气态储存,工作时经降压、计量和混合后进入气缸。2、常压天然气汽车天然气以常压气态储存,但运输存储不便,且存在安全隐患
3、,基本被淘汰。3、液化天然气汽车天然气以液态储存,其体积仅为标准状况下的1/6254、吸附天然气汽车(二)按燃料的组成与应用分类1、单燃料汽车2、CNG.汽油两用燃料汽车3、CNG.柴油双燃料汽车(三)按燃料供给的方式分类(1)机械控制式天然气汽车(2)机电联合控制式天然气汽车(3)电控式天然气汽车(开环和闭环)三、压缩天然气汽车(一)压缩天然气供气专用部件结构及原理1、负压输出的减压调节器基本原理:高压天然气经过天然气滤清器后,进入到常闭式高压电磁阀,以控制供、断天然气。在电磁线圈未通电时,电磁铁芯在回位弹簧的作用下,将先导阀的小孔密封,继而推动先导阀将O形密封圈压在阀座上,通道全部关闭。当
4、电磁阀通电时,由于电磁铁的磁力较小,不能直接把主通道打开,只能先打开先导阀的小孔,这时高压腔的高压气通过小孔流到低压腔,使高低压腔压差减小,然后电磁铁芯通过连接销,将先导阀一起提起,打开主通道。一级减压阀在未通入高压气体时,在压力弹簧的作用下,使膜片向下运动,带动杠杆转动,使阀芯与阀口保持一定间隙,阀口处于常开状态。当通入高压气体时,减压室的压力逐步增高,气体作用在膜片下方的压力克服弹簧的弹力,使膜片向上动作,从而带动杠杆转动,使阀口关闭。当减压室的气体向二级阀输出后,压力降到额定输出压力以下时,在压力弹簧的作用下又使阀口打开,如此反复,使一级减压阀出口压力稳定在0350.4MPa内。二级减压
5、阀的阀口也处于常开状态,高压天然气经过一级减压后进入二级减压室,此时二级减压室内的压力逐步升高,达到额定输出压力时,气体作用在膜片上方的压力克服扭簧的弹力,使膜片向下动作,从而带动杠杆转动,使二级减压阀阀口关闭。当减压室的气体向三级阀输出后,压力降到额定输出压力以下时,在扭簧的作用下又使阀口打开,如此反复,使出口压力稳定在0150.19MPa内。三级减压阀的阀口处于常闭状态,阀的开闭由发动机进气真空度控制,输出压力可通过压力弹簧的预紧力进行调节。当阀室内真空度为零时,在压力弹簧的作用下,阀口处于关闭状态。当阀室处于负压时,由于膜片上方与大气相通,膜片两边出现压力差,膜片向阀里运动,带动杠杆克服
6、弹簧压力,使阀口打开供气。当减压室负压减小时,在压力弹簧作用下,阀口又处于关闭状态,如此反复,就使减压阀出口压力稳定在一个数值内。2、文丘里管结构混合器基本原理:文丘里管安装在空气滤清器与化油器之间。一方面要使喉管处产生真空度来调节减压调节阀的天然气流量,另一方面又要将天然气与空气均匀混合。混合器喉径过大,真空度小,不灵敏;过小,吸人空气量少,影响空燃比,发动机功率下降。通气小孔总截面积应与天然气进气道截面积相匹配。3、正压输出的减压调节器1)一级减压器2)二级减压器3)三级减压器基本原理:每级减压器由进气阀、减压室及阀门开闭调节装置、出气阀等组成。本级出气阀为下一级减压室的进气阀。高压气体由
7、进气阀进入减压室,体积膨胀,当气体作用于膜片组的推力与进气阀门开启力相等时,进气阀又被关闭,使减压室压力不再增高,以达到减压的目的。等气体从出气阀流出时,减压室压力降低,气体对膜片组的作用力小于进气阀门开启力,进气阀又被打开,如此周而复始,使本级减压室压力稳定在额定压力,以达到减压的目的。4、比例调节器工作原理:当发动机起动运行时,发动机进气歧管产生真空,混合器气室B的空气通过管道E进入发动机化油器进气管;气室B产生真空,而气室A与大气相通,混合器膜片在大气的压力作用下克服膜片组的重力和混合器弹簧的弹力上行,打开天然气进气管和混合器空气阀座,天然气和空气通过混合器进入发动机,发动机开始工作。混
8、合器膜片根据发动机化油器进气管的真空度变化上下运动,天然气进气管开度的大小也随着变化,从而向发动机提供不同数量的天然气,与空气形成空燃比合理的混合气。(二)压缩天然气-汽油两用燃料汽车此汽车就是将原来的燃料供给系统保留不变,增加一套“车用压缩天然气装置”。改装后既可以使用汽油,又可以使用压缩天然气。(三)电控喷射天然气汽车1、电控喷气形式2、电控喷气系统的组成及工作原理1) HSV型电控气体喷气阀2) DDEC天然气.柴油喷射器四、天然气汽车性能评价(一)较低的污染排放与空气混合充分、燃料彻底、有害物的排放量很低。(二)良好的运行经济性可使用较大压缩比,理论循环热效率可提高7%-12%.(三)
9、可靠的安全保障天然气汽车作为一种清洁汽车,由于其低排放、安全可靠、技术成熟、有良好的经济效益和环境效益而被广泛应变差用于世界40多个国家和地区。但其也存在一些问题,主要表现在:(1)续驶里程短(2)动力性第二节液化石油气汽车一、 液化石油气概述液化石油气主要来自油田和石油炼厂。主要成份是丙烷,此外还含有少量的丁烷、丙和丁烯。具有燃烧完全、积碳少、排放污染物低、怠速及过渡工况运行稳定性好等优点,但动力性降低。液化石油气的体积低热值和质量低热值略高于汽车,但理论混合气热值比汽油低。辛烷值在IOo-Il0,可提高压缩比;着火温度高,需较高的点火能量。二、 液化石油气汽车的结构与工作原理(一)液化石油
10、气汽车蒸发调压器LPG蒸发调压器是集预热、蒸发、减压、调压于一体,LPG被发动机冷却水加热后蒸发气化,再经减压供发动机使用。1、一级减压室工作过程:来自储气瓶的LPG从进口8流入蒸发调压器高压腔,在自身压力的作用下压开一级阀门1,并进入一级减压室6。在此被蒸发、气化成气体并得到了第一次减压,压力被减小到0140.25MPa。随着6中的气体数量增多,室内压力升高。推动一级膜片3向上运动,压迫一级弹簧4,固定在一级膜片3上的挂钩将一级杠杆2向上拉起,关闭一级阀门1,阻断LPG的进入。随着6中的LPG陆续进入二级减压室17,一级减压室6中的气压降低。当压力降至某一值时,一级弹簧4使一级膜片3向下移动
11、,带动一级杠杆2动作,打开一级阀门1,LPG又进入一级减压室6。于是一级减压室中的LPG压力处于动态平衡状态。增加一级弹簧4的预紧力、减小一级阀门1的阻尼等可使一级减压室压力和出气量增大,反之则使一级减压室压力和出气量减小。2、二级减压室工作过程:二级减压室17的作用是使LPG的压力进一步降低至接近负压。来自一级减压室6的石油气经过二级阀门25进入二级减压室17时压力进一步降低(降至大气压附近),之后经由LPG燃料出口输往混合器。随着进入二级减压室17中的气体数量的增多,室内压力升高,当室内压力大于平衡压力的时候,推动二级膜片18向下运动,这时减压室内体积增大,使得室内压力减小。当室内压力小于
12、平衡压力的时候,在压差的作用下,推动二级膜片向上运动,使得室内压力增加。于是二级减压室17中的LPG压力处于动态平衡状态。增加二级膜片弹簧19的预紧力、减小二级阀门25的阻尼等可使二级减压室17的压力和出气量增大,反之则使二级减压室压力和出气量减小。3、不同工况下混合气浓度的实现。1)怠速系统怠速时,混合器喉口处真空度很低,不能将LPG从蒸发调压器吸出,但节气门后真空度很高,故由真空管13将此真空引入真空气室。使16带动25开度增大。2)主供气系统由混合器、二级减压室、真空室等组成。3)起动系统起动加浓电磁阀开启一级减压室与二级减压室的旁通气道。(二)液化石油气-汽油两用燃料汽车此汽车就是将原
13、来的燃料供给系统保留不变,增加一套LPG燃料供给系统。改装后既可以使用汽油,又可以使用液化石油气。(三)液化石油气-柴油双燃料汽车三、液化石油气汽车性能评价(一)液化石油气动力性动力性略有降低、但在稀混合区具有比汽油机更高的动力性。(二)液化石油气的燃料经济性油耗率更低,更高的稀限,对混合气浓度变化适应性强。(三)液化石油气的排放HCCo大大降低,但NOX基本无变化或稍有增加。第三节醇类燃料汽车一、 醇类燃料汽车概述醇类燃料主要是指甲醇和乙醇。醇类燃料可以和汽油或柴油按一定的比例配制而成混合燃料,也可以直接采用醇类燃料作为发动机的燃料。醇类燃料的来源广,制取方式多。甲醇可以从煤炭、天然气、煤层
14、气,可再生生物资源、分类垃圾等物资中制取;乙醇的原料主要是含糖、含淀粉的农作物,如甜菜、甘蔗、玉米、草杆等。甲醇和乙醇都属有机化合物,是无色透明、易挥发的可燃液体。与汽油相比,热值低、汽化潜热大、抗暴性好、含氧量高等,另外,醇类燃料吸水性强、化学活性高、容易发生早燃等。醇类燃料主要性质表现在:1、辛烷值比汽油高。2、汽化潜热大3、热值低4、腐蚀性大二、 醇类燃料在发动机上的燃用方式1、渗烧醇类燃料以一定比例加入汽油。2、纯烧3、甲醇改质甲醇改质就是利用发动机排气的余热将甲醇改成H2和CO,然后再输往发动机。4、变性燃料乙醇指乙醇脱水后再添加变性剂而生成的以乙醇为主的燃料。三、醇类燃料在发动机上
15、的参数选择(一)汽油机使用醇类燃料时的参数选择1、提高压缩比2、改善燃油分配均匀性及供油特性3、混合气空燃比的调整4、火花塞及点火时间的调整(二)柴油机使用醇类燃料时的参数选择。1、压缩比的选择2、电热塞与火花塞(三)醇类燃料汽车的供给系。四、醇类燃料在汽车上的应用(一)纯甲醇发动机的开发实例(二)甲醇与柴油在汽车发动机上的缸内预混喷油五、醇类燃料发动机性能评价动力性变化不大,污染物排放也大致相当。第四节氢气汽车一、氢燃料汽车概述氢气在常温常压下为无色、无味、无毒的气体,大部分以化合态的形式存在。氢主要有以下特点:1、氢是所有元素中质量最轻的。2、常温常压下为气体,携带性和安全性差。3、极易点燃,但自着火温度高于汽油和柴油。4、质量热值高,但由于其密度太小,单位体积发热量只有汽油的二十分之一。5、不含碳元素,因而不排放CO、HC、C02以及硫化物。6、储存不便,难以满足续驶里程要求。7、动力性差。二、氢的制取与储存(一)氢的制取最常见的是电解水制氢。此外还有利用热化学循环分解水制氢。以及从煤、石油、天然气中制取等。(二)氢的储存传统氢的存储方法主要有压缩储存、液态储存以