《函数(专升本).ppt》由会员分享,可在线阅读,更多相关《函数(专升本).ppt(40页珍藏版)》请在优知文库上搜索。
1、1 1. .常量与变量常量与变量: : 在某过程中始终保持一个数值的量称为在某过程中始终保持一个数值的量称为常量常量,注意注意常量与变量是相对常量与变量是相对“过程过程”而言的而言的.通常用字母通常用字母a, b, c等表示常量等表示常量,而不断改变数值的量称为而不断改变数值的量称为变量变量.常量与变量的表示方法:常量与变量的表示方法:用字母用字母x, y, t等表示变量等表示变量. 第一节第一节 函数函数 一、基本概念一、基本概念2因变量因变量自变量自变量)(xfy 变变量量y按按照照一一定定法法则则总总有有一一个个确确定定的的数数值值和和它它对对应应,则则称称y是是x的的函函数数,记记作作
2、2、函数、函数,DR定义域:值域3函数的两要素函数的两要素: : 定义域定义域与与对应法则对应法则.约定约定: 定义域是自变量所能取的使算式有意义定义域是自变量所能取的使算式有意义的一切实数值的一切实数值.21xy 例如,例如,: 1,1,:0,1.DR211xy :( 1,1),:1,).DR4例例 求求 y y =arcsin =arcsin 的定义域和值域。的定义域和值域。x2解:解: 120 x函数的定义域为函数的定义域为: : .20:, 21 yx函数的值域为函数的值域为得定义域为得定义域为(1 1 , ) 解:解:10110 xxx 例例 求求1ylg(1)1xx的定义域的定义域
3、 . . 5例例 判断下列几对函数是否相等判断下列几对函数是否相等. .(1)f(x)=2lnx, (x)=lnx(1)f(x)=2lnx, (x)=lnx2 2 ; ;(2)f(x)=x, (x)=|x|;(2)f(x)=x, (x)=|x|;(3)f(x)=sin(3)f(x)=sin2 2x+cosx+cos2 2x, (x)=1.x, (x)=1.解:解:f(x)f(x)的定义域为的定义域为),0(,(x)(x)的定义域为的定义域为0 x所以它们不相等。所以它们不相等。解:解: f(x) f(x)与与(x)(x)的对应规律不同的对应规律不同 ,所以是不同的函数。,所以是不同的函数。解:
4、解:f(x)f(x)与与(x)(x)的对应规律相同的对应规律相同 ,定义域也相同,定义域也相同,所以所以 f(x)=(x) f(x)=(x)。6 (1) 符号函数符号函数 010001sgnxxxxy当当当当当当几个特殊的函数举例几个特殊的函数举例1-1xyoxxx sgn7 0, 10, 12)(,2xxxxxf例如例如12 xy12 xy在自变量的不同变化范围中在自变量的不同变化范围中, 对应法则用不同的对应法则用不同的式子来表示的函数式子来表示的函数,称为称为分段函数分段函数. (2) 分段函数分段函数8(3) 取整函数取整函数 y=xx表示不超过表示不超过 的最大整数的最大整数 1 2
5、 3 4 5 -2-4-4 -3 -2 -1 4 3 2 1 -1-3xyo阶梯曲线阶梯曲线x9例例.)3(,212101)(的定义域的定义域求函数求函数设设 xfxxxf解解 23121301)3(xxxf 212101)(xxxf 122231xx.1, 3 : X故故10oyM-Mxy=f(x)D有界有界无界无界M-MyxoD0 x,)(, 0,)(MxfDxMxfD 有有若若的的定定义义域域是是设设1函数的有界性函数的有界性:.)(否则称无界否则称无界上有界上有界在在则称函数则称函数Dxf三、函数的特性三、函数的特性例例 y=sin y=sin2 2x, y=cosxx, y=cosx
6、在(在(-,+)-,+)上均为有界上均为有界函数函数, y=x, y=x, y=x, y=x2 2在在(-,+)(-,+)上无界上无界. .1( ).(.(.(.(f x 在(0,+ )有界,无界)x在(0,1有界,无界)在1,2有界,无界)在1,+ )有界,无界)122函数的单调性函数的单调性:,)(DIDxf 区间区间的定义域为的定义域为设函数设函数,2121时时当当及及上任意两点上任意两点如果对于区间如果对于区间xxxxI ;)()(的的减减少少上上是是单单调调增增加加在在区区间间则则称称函函数数Ixf)()(21xfxf 恒恒有有)(xfy )(1xf)(2xfxyoI例:例:y=x,
7、 y=ey=x, y=ex x 在(在(-,+)-,+)内单调增加。内单调增加。)(xfy )(1xf)(2xfxyoI),)()(21xfxf 133函数的奇偶性函数的奇偶性:偶函数偶函数有有对于对于关于原点对称关于原点对称设设,DxD , )()(xfxf yx)( xf )(xfy ox-x)(xf.)(为为偶偶函函数数称称xf14有有对于对于关于原点对称关于原点对称设设,DxD ),()(xfxf .)(为为奇奇函函数数称称xf奇函数奇函数)( xf yx)(xfox-x)(xfy 15例例 判断函数判断函数 的奇偶性的奇偶性. .)1ln()(2xxxfy 解:解:)(1ln()(2
8、xxxf )()1ln(2xfxx f(x) f(x)是奇函数是奇函数. .(A) (B) (C)单调增函数)单调增函数(D)奇函数奇函数偶函数偶函数非单调函数非单调函数(08) 是(是( D )22( )2, 12xf xxex 164函数的周期性函数的周期性:(通常说周期函数的(通常说周期函数的周期周期是指其是指其最小正周期最小正周期).2l 2l23l 23l在在(无穷无穷)多个正周期中多个正周期中若若存在一个最小数,此最小数称为存在一个最小数,此最小数称为最小正周期最小正周期。,)(Dxf的定义域为的定义域为设函数设函数如果存在一个不为零的如果存在一个不为零的()( ).f xlf x
9、且为周为周则称则称)(xf.)( ,DlxDxl 使得对于任一使得对于任一数数.)(,的周期的周期称为称为期函数期函数xfl恒 成 立 ,17四、反函数四、反函数习惯上习惯上, 反函数反函数 x= (y)写成写成 y = (x) = f 1(x).定义定义1 设有函数设有函数y=f(x)(x X),其值域,其值域Y=f(X).若对于若对于Y中每一个中每一个y值值, 都可由方程都可由方程f(x)=y确定唯一的确定唯一的x值值:x= (y), 称为称为y=f(x)的的反函数反函数,记作记作x=f-1(y), 读读“f逆逆” 。)(xfy 直直接接函函数数xyo),(abQ),(baP)(xy 反函
10、数反函数直接函数与反函数的图形关于直线直接函数与反函数的图形关于直线 对称对称.xy 18例例.,3 xxy例例 证明若函数证明若函数 y = y = f f (x)(x)是奇函数且存在反函数是奇函数且存在反函数 x = x = f f 1 1(y), (y), 则反函数也是奇函数则反函数也是奇函数。证明:证明: xxy,3的反函数是的反函数是).()()()(1111yfxxffxffyf 反函数是奇函数。反函数是奇函数。19定理:定理: 设有函数设有函数y=f(x) ,xX, 若该函数在若该函数在 X 内严格单调上内严格单调上升升(或下降或下降)则必存在反函数则必存在反函数x=f-1(y)
11、,yf(X)且反函数在且反函数在f(X)内也严格单调上升(或下降)内也严格单调上升(或下降).0101)(2的反函数的反函数求求 xxxxxf解解: : 当当x x 0 0时时,y,y 1,1,1122 yxxy当当xx0 0时时,y1,x=y-1,y1,x=y-1,.1, 11,1,2 xxxxy得反函数得反函数综上综上例例基本初等函数基本初等函数201.幂函数幂函数)( 是常数是常数 xyoxy)1 , 1(112xy xy xy1 xy 第二节第二节 初等函数初等函数212.指数函数指数函数)1, 0( aaayxxay xay)1( )1( a)1 , 0( xey 223.对数函数对
12、数函数)1, 0(log aaxyaxyln xyalog xya1log )1( a)0 , 1( 234.三角函数三角函数正弦函数正弦函数xysin xysin o24xycos xycos 余弦函数余弦函数o25正切函数正切函数xytan xytan o26xycot 余切函数余切函数xycot o27正割函数正割函数xysec xysec o28xycsc 余割函数余割函数xycsc o295.反三角函数反三角函数xyarcsin arcsin1,1yxx 反反正正弦弦函函数数,o性质:有界,递增,奇函数,性质:有界,递增,奇函数,2 2 值值域域 ,30 xyarccos arcco
13、s ,1,1yx x 反反余余弦弦函函数数o 0, 性质:有界性质:有界,递减,值域31xyarctan arctan ,yx xR反反正正切切函函数数o性质:有界性质:有界,递增,奇函数,值域()22 ,32 常数函数,常数函数, 幂函数幂函数,指数函数指数函数,对数函数对数函数,三三角函数和反三角函数统称为角函数和反三角函数统称为基本初等函数基本初等函数.ar cot ,ycx xR反反余余切切函函数数xycot arco性质:有界性质:有界,递减,值域(0, ) 复合函数复合函数 初等函数初等函数331.复合函数复合函数,uy 设设,12xu 21xy 定义定义: 设函数设函数y=f(u
14、),函数函数u= (x), 其其 (x)值域全部或部值域全部或部分落在分落在f(u)的定义域内的定义域内,则称函数则称函数y=f (x)为为x的的复合函数复合函数,u称为中间变量。称为中间变量。,自自变变量量x,中中间间变变量量u,因变量因变量y代入法代入法34注注: :0不是任何两个函数都可以复合成一个不是任何两个函数都可以复合成一个复合函数的复合函数的;,arcsinuy 例如例如;22xu )2arcsin(2xy 0复合函数可以由两个以上的函数经过复合复合函数可以由两个以上的函数经过复合构成构成.,2cotxy 例如例如,uy ,cotvu .2xv 352. 初等函数初等函数定义定义
15、: 由六类基本初等函数经过有限次四则运算及有限次复合由六类基本初等函数经过有限次四则运算及有限次复合运算所构成并可用一个式子表示的函数,称为初等函数。运算所构成并可用一个式子表示的函数,称为初等函数。例:例:不是初等函数不是初等函数为初等函数为初等函数1sin2xeyx1xxy00 xx不是初等函数不是初等函数nnxaxaay10为初等函数为初等函数nnxaxaay1036例例).(,0, 10, 2)(,1,1,)(2xfxxxxxxxxexfx 求求设设解解 1)(),(1)(,)()(xxxexfx,1)(10时时当当 x, 0 x或或, 12)( xx;20 x, 0 x或或, 11)
16、(2 xx; 1 x37,1)(20时时当当 x, 0 x或或, 12)( xx;2 x, 0 x或或, 11)(2 xx; 01 x综上所述综上所述.2, 120011, 2,)(2122 xxxxxexexfxx 小结小结38函数的分类函数的分类:函数函数初等函数初等函数非初等函数非初等函数( (分段函数分段函数, ,有无穷多项等函数有无穷多项等函数) )代数函数代数函数超越函数超越函数有理函数有理函数无理函数无理函数有理整函数有理整函数( (多项式函数多项式函数) )有理分函数有理分函数( (分式函数分式函数) )39Z 思考思考下下列列函函数数能能否否复复合合为为函函数数)(xgfy ,若若能能,写写出出其其解解析析式式、定定义义域域、值值域域,)()1(uufy 2)(xxxgu ,ln)()2(uufy 1sin)( xxgu40思考题解答思考题解答2)()1(xxxgfy ,10| xxDx21, 0)( Df)2(不能不能01sin)( xxg)(xg的值域与的值域与)(uf的定义域之交集是空集的定义域之交集是空集.