《齿轮与齿轮箱振动噪声机理分析及控制.docx》由会员分享,可在线阅读,更多相关《齿轮与齿轮箱振动噪声机理分析及控制.docx(8页珍藏版)》请在优知文库上搜索。
1、齿轮与齿轮箱振动噪声机理分析及控制一、齿轮振动的实例1齿轮轮毂的振动齿轮传递扭矩首先从轴传至轮毂,由轮毅传递到轮齿,再由主动轮轮齿传递到被动轮轮数和轴系。在传递过程中,由于受到轴向激励力的作用,齿轮轮数产生轴向振动。另外,由于啮合力的作用,轮较也会产生.横向和沿周向的振动。2轴承及轴承座的振动齿轮系统通过轴系安置于轴承及其轴承座上,由丁齿轮本体的抽向和周向振动必引起轴承支承系统的振动,相反,外界干扰力(如螺旋桨的轴承力)也可能通过轴承传递给齿轮系统。3齿轮箱的振动齿轮的振动由轴系传到齿轮箱,激励箱体振动,从而辐射出噪声。另外,轮在箱内振动的辐射声激励箱体,使箱体形成二次辐射噪声,这类噪声大部在
2、中低频范围内。齿轮箱体本身的振动也直接产生辐射声。4齿轮的振动在啮合过程中,轮齿先由一点接触而扩展到线接触,或一次实现线接触,使得接触力大小、方向改变,产生机械冲击振动,从而福射出噪声。这类噪声呈现高频冲击的形式,其典型的齿轮振动时程曲线示于图2。轮齿岫合时不断变化的岫合力,既激发齿轮的强烈振动,即各个轮齿的响应很大,也激发了齿轮箱箱体较弱的振动。通常认为齿轮产生噪声的主要原因是轮齿之间的相对位移。这类噪声源产生的噪声可以用付氏变换法把噪声表示为稳定频率的分量的集合。图1齿轮啮合振动及噪声传播三M图2齿轮振动时程曲线二、齿轮振动噪声产生的机理I齿轮啮合激励产生的噪声齿轮的轮齿在啮合时因传动误差
3、产生交变力,在交变力作用卜产生线性及扭转响应,使齿轮产生振动辐射出噪声。这是种主要的噪声源,接触力变化越大,则齿轮相应的振动响应越大.另外,齿轮的周节差产生的由复杂的或调制频率及其倍频组成的噪声,含有重史的基频(轴频),频率很低。由于周节差产牛了不规则的脉冲序列。这种脉冲序列包括了众多的频率成份,但还不能认为是宽带随机噪声。在众多频率成份中,由于脱啮后轮齿重新啮合时的冲击,所产生的噪声是明显的。在一般情况下,啮合振动能够产生轴频的任何一个倍频上的激励,这种激励传递到齿轮箱引发箱体共振时产生明显的噪声,尤其当箱体的固有频率较低,而啮合频率很高时,很可能在某倍频下产生箱体共振。钺槽或花铺槽在啮合力
4、作用下,使得齿轮和花镀之间间隙产生无规则的变化,从而产生与周节差引发的相似的噪声。2滑油喷注产生的噪声种齿宽较大的直齿齿轮,在岫入端吸入过多的滑油,这些滑油滞留于齿根间隙中而无法迅速从端部排出形成“困油现象:困油现象发生在两个啮合齿的接触部位形成的一个封闭容积内。这种封闭容积在齿轮转动时会产生容枳变化,由于滑油是不可压缩液体(压缩性极小,体枳模量为1.4X109),即使很小的容积变化都会使齿轮轴上的附加战荷发生周期性的剧烈变化,使齿轮激励振动而产生噪声。另外,在容积增大时,压力即迅速减少,从而使得轮齿间迅速减压造成“空蚀”,使齿轮激发出强烈的高频振动,同时辐射出噪声。与此同时,高压油从齿端部高
5、速喷射,射源冲击齿轮箱箱体也会引发啮合频率激励而产生齿频噪声及其倍频噪声。3轴承力激励如果齿轮传递扭矩为船用螺旋桨推力(作用在推力釉承上)与扭矩,则螺旋桨在不均匀流场中产生的非定常轴向力或扭矩通过轴系传递到轴承,由轴承传递给齿轮,对齿轮产生不稳定的激励,此即为轴承力激励。由此种激励使齿轮产生振动辐射出噪声,这种噪声与轴承力的激励密切相关。另外,由于齿轮轮齿的弹性原因,齿轮在传递动力时,后两对轮齿啮合时的齿对数只有一对齿哦合的1/22/3。因此,当主动轴旋转时,对应于齿对数的变化,从动齿轮发生与旋转转速变化相同的振动,从而辐射出噪声,这也是主要噪肖源之一.4高次谐波的产生齿轮在梗定旋转过程中受到
6、重合系数等许多因素影响,在轮齿上所传递的力是随时间变化的周期性函数。由于机械加工或磨损引起轮齿偏离实际情况的偏差,如均匀分布的磨损产生啮合振动及其高阶啮合频率,但不引起边带.但非均匀分布的缺陷,在周期性脉冲力作用下产生低阶谐波频率,并由于调幅或调频作用而产生边带。节圆相对于旋转中心存在偏差,产生.调幅。不均匀齿距或转速变化产生调频,即引起晒合频率的变化。若以fs表示轴频,仅表示咱合频率,则实际频率/=心士感(HZ)其中,n、m为任意整数,n表示哂合频率的高阶谐波频率:m表示以轴频.fs为调制频率的边带簇数.三、齿轮振动噪声特性1调制特性调制特性在齿轮推动噪声中广泛存在。当齿轮存在局部缺陷时,或
7、在轮齿上产生地痕、蚀坑等缺陷,此时会在频谱图上给出一个由周期性脉冲,激励引起的调幅,出现众多的低频边带,由故障与缺陷而引起振动能量增大,大多数反映在边带分量上。如果缺陷向邻近轮齿扩展会引起更大的、更密集的以哦合频率为中心须率的边带(见图3)。(八)振动谱IHMHz(00015一一-fii.OH/-=二Rr5WHz(b)振动谱图3轴频对齿轮啮合频率的调制调频是由某一个纯单频激励对以啮合频率为中心频率的调制,这将会产生具有等时距(在嫉域上某频率)的边带族。令齿合激励的振动信号为XNC,受到轴转频激励信号为Xr1.和Xr2的调制,若其振动形式以简谐周期形式描述,则Xg(,)=4而(%;+产)X”(三
8、)=B1.cosk1.tXri(t)=B2Coskt其中:kNC为啮合振动频率,可作载波频率;U和k2为调制频率,因调制特性存在振幅调制与频率调制。振幅调制:令m1.,m2为调制因子,它的大小取决于缺陷的状态,振幅调制y(1.)为yt=41.+w1cos(耳)+雁2cos(Q)sm(%f+方)其中:A为振幅矢址:k1.k2为调制频率:kNC为载波频率:h为初相位.上述的调制作用可以表示为对原啮合频率Asin(kNC1.+h)分量,独加上两对振幅05m1.A和05m2A,其频率相应为kNCk1.和kNCk2。它是由于谢制作用而多出的频率分量,相当于以幽合频率kNC为频率的量,被称之为“边带簇”。
9、经振幅调制后,调制后的信号总能J增加了O,5(m1.A)3与05(m2A)?之和,从而是可以反应出齿轮缺陷的状态特性。频率调制:令调制信号中的频率偏差为Ak.则信号的频率调制y(t)为y(t)=4sn+华sinj,1f+-sn2+上式表示了信号的频率调制,调制波的大小从未调制的个单位下降为A(Akk),并产生了无穷多个边带,边带频率fm(k2n)与啮合频率INC之间的间隔是调制频率的整数倍。边带能量与(Akk2正比。因全部啮合振动的能量正好等于载波啮合频率的分量与边带能量之和,与未调制时的总能量是相同的,边带的产生使帆合振动的能显有部分分散到边带上,有利于减振。由图3可以看出,在啮合频率为中心
10、频率的两侧出现了明显的边带簇,调制频率的频距为轴频fs,其边带宽度为2mfs(+mf$-mfs)。由于以频谱为依据很难区分调制与调频,为此只研究调频就足够了。轴转嫉对岫轮岫令频率的调制,使得岫合频率处的振动能量向两侧较宽的边带内扩展,从而降低了齿轮振动的量级.图3a所示为1#齿轮的振动谱,它的一阶啮合频率为4150Hz,两侧的边带频率为轴频对啮合频率的调制频率。图3b为轴转频对哦合频率谢制的另一例。图中1265HZ为2#齿轮系统48齿齿轮的啮合须率,其调制频率的边带为m(253)Hzi2#齿轮的边带振动级较高,说明调制频率的边带能量相对大一些.从图3c齿轮噪声谱也可以看出轴频对齿轮啮合频率的调
11、制现象,分别表示了11.4Hz和16Hz轴频对齿轮啮合频率741Hz和448Hz的调制影响。在741HZ中心频率处的边带簇较宽,在448Hz中心频率处边带族较窄,表明岫合频率高时,调制频率边带分布的能量较多;而在较低啮合频率处,调制频率的边带族较窄,因而分布的能量较少。但啮合频率的振动级很高是主要的振动噪声能量携带区域。齿轮轴频对啮合频率的膨晌列于表1中。表1四种传动齿轮轴频对哂合频率谢制型号W1.vxb三i合算if下边带一册上边带二冷倍频二阶下边带二的iam备注1齿轮253ZoZ?1265124012902530250525552*tftt335ZaZ”41504117418.3WOO826
12、7M33二倍於为讨J1.ii3齿轮11.4Z11Z4124004248248128364.齿蛇16.0Z.Z4484W4648968809122总声级随转速的变化根据众多试验观测表明,转速与总声级存在明显关系。表2三类齿轮测试总声级与转速的关系dB(八)转速(r11in)主机水泵例燃料泵例测点距离加)11440(冷车)90107.8980.122000(冷车)/108.9101.10.133380(热车)12011011200.1由表2可以看出,转速从1440升到3380时,各个测点上所测齿轮振动的总声级大多数呈明显上升趋势。转速越高,噪声级就越高,在3个测点上所反映的实测结果是一致的,表示了
13、啮合振动所做的贡献。3倍频特性齿轮本体的轴向、径向振动,齿轮的啮合振动,由于齿轮的缺陷在周期性冲击力作用下会产生基频的振动。二次谐领、三次谐频或更高谐频的振动,即会出现n倍基频的振动(其中,n=1.,2,3,)称之为倍频特性。四、振动噪声的控制措瓶1提高加工、装配精度齿轮的齿形、齿面精确加工精心装配,减小齿面缺陷可以大大减小齿轮暗介时的振动冲击。此外齿的形状,齿轮轮齿的排列、优化都能大幅度降低齿轮噪声。如直齿改为斜齿,或采用非对称齿形。根据啮合时的冲击振动除了受到压力角T影响之外,主要与为数有关。增加齿轮齿数可采用双模数不对称的渐开线齿形。齿数增加可使冲击幅值下降,但应注意尚轮的加工精度。据研
14、究该法可使噪声下降3dB左右,2采用隔振及阻尼减振装苴对振动与噪声的控制除了在设计与制造时优化齿轮结构参数,如齿形、重合系数、压力角等外,可以在齿轮轮体以及支承系统采用隔振措施。如在齿轮端而附加一个阻尼环或钺嵌高阻尼材利以便吸收齿轮的啮合振动能量,以减少齿轮辐射声.与此同时,可在齿轮轴系端部及轴承部位接装适当的减振装置,如食在轴头部位的阻尼减振套(垫工如采用高明尼铝合金的齿轮箱总振动级比普通铝合金箱体下降34dB,采用高阻尼铝锌合金,总振动级下降5dB左右。3改善润滑方法齿轮洵滑时,一般情况卜.,齿轮系统部分置于油液中,在齿轮旋转时,油液由曜人方向进入两岫合齿的空间,从而使油液滞留于齿间。当齿
15、间容积诚小并乂逐渐增大时,液压由小变大再减小,从而产生液压脉动现象.在压力变化过程中,由于每一个循环的后期载荷突然减小,而呈现“阶跃”式变化,因而造成轮齿的冲击而使齿轮辐射出噪声。同时在和载时,因压力突降,在油液中的气泡迅速扩张,形成的空泡爆裂,对轮齿也产生冲击,针对此种噪声,改善涧滑方法是仃效的,可使滑油由啮出方向进入轮齿进行润滑而不从啮入方向进油,这可大大改善齿轮的振动与噪声.五、结论齿轮的振动噪声主要来源于齿的缺陷、磨损以及安装偏差、加工误差等,因此提高加工、安装精度,选用适当齿形可降低噪声。齿轮缺陷、磨损等运转不平衡及啮合频率、机械振动频率与轴转频缺陷等对齿轮啮合振动的振幅和频率产生的调制是普遍存在的。采用隔振方法降噪是一种行之有效的方法。齿轮的噪声机理分析一般来说,齿轮系统噪声的声源主要有:齿轮系统本身轮齿幽合的动态激励,原动机(发动机、电动机等)的振动以及工作机构的振动和负载变化等。在齿轮系统动力学中,主要研究由齿轮喷合的动态激励产生