《No 8-4 有限时间同步,林美丽课程论文.docx》由会员分享,可在线阅读,更多相关《No 8-4 有限时间同步,林美丽课程论文.docx(11页珍藏版)》请在优知文库上搜索。
1、H3.假设外界的扰动(x)是有界的,即存在正常敷办,使用Ild(XJ)I钺.定义澳变e=x-F%=-a%=/7-/,则澳差系统为e=f(x)-g(y)+F(x)a-G(y+d(x,t)-u(t,x)(3)我们的目标是实现主-从系挽的有限时间同步,下面先给出有限时间定的假念.定义1.考虑如下动力系统x(t)=f(x)若存在一个正借败了,使用!M=且当年7时,IlM)Il=0,则称系线W)=()为有限时间定的.我们的目的是找寻合适的限制,使得主系统和从系统的轨线和y(O,系统数和估计数小,和之力澜*3r1.rswIka)-M川=。,Ia-0.0O,V(n)O.那么,对于随意给定的r。,M(1) V
2、,(V,-,(ro)-c(l-77)(-ro).orrpv0)=O,这里乙=%+C(I-V)Bl三2beR.Oq,都有(网+|町e+坪.那么,我f有下面结果.定理:若主-从系线(1)-(2)就上述假设HlT3,并且滴意下列条件1 .选取限制M(X)=lf+,e+F(x)a-G(y)其中用42B+/?./7=-G(y+,eflXr2则主-从系统(IAQ)可以在有限时间达到同步,同步时间为1.=/且此时系豌的未知数/可分期由之方IR别.证明:JSW1.yapunov函数为1.1 rIr1rv=2e。+万,。“+外eA则V沿着囊差系统(4)的轨线对时间的导致为V=er-eta-efi=e(f(x)-
3、g(y)+F(x)a-G(y)+(l(x,t)-u(t,x)-eaa-et=e(/(X)-g(x)+er(g(x)-g(y)+eF(X)(Ct-d)-erG(y)(-jff)+erd(x,0-e(kle+i,三+1=-25/这里2由祠限时间程定性理论,可以内到澳差系统(4)为M限时间一定的.故主-从系观的未知“7在同步限制中可分别由识别.且由引理1可密,谀差I-Il-系观可以在有限时间达到同步,同步时间为丈=小/2-(-f)注11由于1.ipsohitz条件比较难于It证,常用式二)在R上对2的连续借导收来代明注2:若在限制及能数更新率中(M)则当e时隈制iB(r.)-,敷更新率fg8.所以若
4、出现此情形,在仿真过程中,以来代M+工,其中,为很小的一个正常败IleIl3.敷值仿A利用*Me进行值仿真险证H阅论结果.考虑以海沌Hyball系纥为主系统,其状态方程为%、X2X2-sinx1-1.942,O+Xysin.r1COSX1OOX2OO、OCOSAu4(xj)+d2(x,t)HQ,从系鼓为R6ler系筑f2+yt。YAw(t)yjbh+027y2O/7,+m,(j)J?JU(XJb选取未知今数a,=0,25,2=-O.7,3=5.13,51=-l,jff,=0.2./7,=-7,外界扰动d(dl.d2,d3)1=(0.2sin4/.O.Isinf+0.1cos3t,O.1isin
5、2t)rt借fte=IOT,r=l系统构值为(.tl,x2,x,/=(i.i)r,(yl,y1,y9)=(-1,2,-1)7,(a1.a2,j)r=(0.5,l,1.5)r,(综氏,=(1,2.3)、且由图1-2我们可以招到混沌吸引子的界为-3xl3.-55,011.所以同M26,(NY(,)-g(x)=-sinxl-xlI=yx;+(-sin.rl-.rl)+(-1.942-xlx,-0.2):36.-1.942-X1X1-0.2JOOOIg(X)-g(,H=100x-yo“=oy,ojj-Aj.Oo-J闷且由定理可将,估计PJ步时间”16.0854.数值仿JUa果如图所示.图3是系统(1)
6、和(2)的同步襄差曲线.BB4-5系统(1)和(2)中未知B敷与估计我的索差曲线,图68给出了系筑(1)的未知期改与估计套数图9-11给出了系姚(2)的未知ft与估计参数.由同步谀差图可知,两个系统IS过有限时间(10.5.)能实现同步,这就证明白上述同步方法在实现混沌系统(1)和(2)的同步和未知数叔别时是球的.ffl1混沌吸引子在Al-平面上的投影S2混沌吸引子在M-冬平面上的投影图3混沌flyball系统-混沌R63r系统同步溪差4iRMflybll系旋中*三5震沌R5I”系统中BiU1.,=6-QS61示肱%,实线赛示估计Q匕BB7%,实H示估计敷W图9如吟#*实线表示估计.nio虚线
7、我示*a.实疑我示估计*A图8*,实线我示估计敷公S11AMtMA,实线访估计A4.结论本文基于有限时间稔定理论,实现了异结构混浊系统的有隈时间同步.并且分别给出主-从系烧中未知X的参数更新律.GenMio-Tsi和Rotsler系跳的仿真栽明,系统在有限时间达到同步,且末1我在有限时间内可由B数更新律IR弱,”证了该方法的有效性.“姬1 ShihuaChenandJinhu1.D.Synohronizationofanuncertainunifiedchaoticsyte*viaadaptivecontrol.Chttos,SolltoneFractals,22,14:643-647.2 C
8、.WangandS.S.e.AdaptivesynchronizationofuncertainchaotioytMviatckteppingdoign,Chao,SolitoneFractela,2001,12:1199-1206.3MingchungHo,YaochenHung.SynchronizationoftwodifferentysteMbyusinggeneralizodactivecontrol,Phyeice1.ettersA,2002,301:424-4284 Youning1.ei,WeiXu,JianwoiShen,TongFang.Glotalsynchronizat
9、ionoftwoparamtricalIyexcitedsystemusingactivecontrol,Chaos,SolitoneAFreotala,2005,28:428-4365 XiaofentWu,JianpingCai,MuhongBang.Harter-slavechaossynchronizationritriaforthehorizo11tIplatfo11三ystemviaIinarfateerrorfeedbackcontrol,JournalofSoundendVibration,2006,295:378-387.6 ChaohaiTo,HongxiaXiong,Fe
10、ngHu.TwonovelsynchronizationorItorIontforaUnIfiMIchaosytem.Cheoe,SolitonsMdFrecta18,2006,27:115-120.7 Wanglong1.i,KuoningChang.RobustsynohronIzationofdrive-responsechaotioyrtMviaadaptivelidingnodecontrol.Cheos,SolitoneAFractals.2007,doi:10.1016j.chaos.8 NoezFeki.SIIdlngMOdecontrolandsynchronizationo
11、fchaotioytmwithparametricuncertainties,Chao,SoHtone4Fractale,200,9 JunjuhYntMMninfHung,TmJnfyingChiang.YiungYang.Robutsynchronizationofchaotic*yteMviaadaptivelidinnodecontrol.Physics1.ettersA,2006.356:220-225.10 HuaWang,ZhengzhiHan.QiyuoXie,WeiZhang.SIidingnodecontrolforchaotiosysteaebasedon1.UI,Caa
12、eunioetioneinNOnnnearSoienoeendNuaerlcelSimulation,2009,14:1410-1417.11 JunjuhYan1YitungYang,TtungyingChiang,ChingyuanChen.Robutsynchronizationofunifiedohaotiosystemviasiidinnodecontrol.Chaos,SolitonsendFrectale,2007,34:947-954.12 JenfuhChang,MeeiIingHung,YisungYang.Tehlu1.iao,JunjuhYan,ControlIlngchaosofthefmiIyofRlorsystemuinlIdingnodecontrol.Cheoe,Solitone&Fractals,200,37:609-62213 SarDadrM,HaaidRzaMoaenitVahidJohariMajd.SIidingnodecontrolforuncertainnewohaotiodynanioalyste*.Chaos,SolitonsFraotale,2008,doi:10.10