BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx

上传人:王** 文档编号:994295 上传时间:2024-03-13 格式:DOCX 页数:15 大小:214.98KB
下载 相关 举报
BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx_第1页
第1页 / 共15页
BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx_第2页
第2页 / 共15页
BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx_第3页
第3页 / 共15页
BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx_第4页
第4页 / 共15页
BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx_第5页
第5页 / 共15页
BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx_第6页
第6页 / 共15页
BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx_第7页
第7页 / 共15页
BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx_第8页
第8页 / 共15页
BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx_第9页
第9页 / 共15页
BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx_第10页
第10页 / 共15页
亲,该文档总共15页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx》由会员分享,可在线阅读,更多相关《BCG-生成式人工智能在未来工厂中的作用(英)_市场营销策划_重点报告202301202_doc.docx(15页珍藏版)》请在优知文库上搜索。

1、GenerativeAPsRoleintheFactoryoftheFutureDECEMBER08,2023ByDanielKupper,KristianKuhlmann,MonikaSaundersjJohnKnapp,Kai-FredericSeitzjJuIianEnglberger,TilmanBuchner,andMartinKleinhansREADINGTIME:15MINGenerativeAlisoneoftoday,shottestbusinesstopics,withcompaniesexploringitspotentialapplicationsandbenefit

2、sacrossindustriesandfunctions,includingmanufacturing.Butdespitetherecentbuzz,manufacturersshouldrecognizethatsimplyapplyingtoolslikeChatGPTontheirownwillnotrevolutionizefactoryoperations.InsteadofreplacingtraditionalAl,GenAIofferscomplementaryusecasesintheareasofassistance,recommendations,andautonom

3、ythatpavethewaytothefactoryofthefuture.Itdoessothroughitscapacitytogeneratecontent,suchastextandimages,tailoredtospecifictasksorinquiries.(SeeuHowGenAIWorks.n)Howgenaiworks-TodiscusstheapplicationsofGenAI,itisessentialtofirstdefinehowitdiffersfromttclassica,machinelearning(ML).ClassicalMLalgorithmsd

4、iscernpatternswithinobserveddata,enablingthemtogeneralizetheseinsightstonew,previouslyunseendata.Forinstance,anMLmodelmightbetrainedusingspecifictextfragmentssuchasoperatorincidentreportsinwhichmachinebreakdowndescriptionsareclassifiedintospecificrootcausessuchas,endoftoolinglifeoroperatorerror.Base

5、donthistraining,themodelcanprocesspreviouslyunseentextfragmentsofincidentreportsandjudgewhatcausedtheincident.Thebasisforsuchmodelsmaybedeepneuralnetworks,supportvectormachines,orothermethods.GenAItakesthisapproachfurther.Beyondmerelyclassifyingexistingtext,itcangeneratenewtextbasedonspecifiedcriter

6、ia-suchasoperatorinstructionsthatoutlineaprocesstoresolveaparticularrootcauseofamachinebreakdown.AlthoughtheprogressionfromclassicalMLtoGenAImightseemincremental,itposesafundamentaltechnicalchallenge.InclassicalML,themodelmerelyneedssuffcienttrainingtoconfidentlycategorizeatextfragment.Incontrast,Ge

7、nAImustconstructatextfragmentfromindividualwordsandletters,ensuringthatitisgrammaticallycorrect,comprehensible,andaccuratelyrepresentstheprocess.ThenumberofpotentialoutputsfromGenAIisvirtuallylimitless.Consideringthatthereareroughly170,000Englishincurrentuse,amerefive-wordtexthasmorethan140septillio

8、npotentialcombinations.Ontheotherhand,onlyafractionofthemwouldbegrammaticallycorrectandunderstandable.Amongthose,anevensmallerfractionwouldaccuratelydescribeagivenprocesstofixtherootcauseofamachinebreakdown.Consequently,themarginforerrorinGenAImodelsisincrediblynarrow,necessitatingextremelyprecisemo

9、dels.Toattainthisprecision,GenAImustuseufoudationalmodels5*insteadofbeingtrainedonlyoncontext-specificdata.Foundationalmodelsaretrainedonextensivedatasets,suchasallavailabletextorimagesonline,andaresubsequentlyfine-tunedforspecificapplications.Thesemodelscanbelargelanguagemodels(suchasOpenAsGPT-4orA

10、mazonQ)orimageorspeechmodels.Theyseemtogainanunderstandingofrealityfromtheextensivedatasets.However,foundationalmodelsareobservationallearnersthatdonotapplylogicorreasonashumansdo.ThismeansthatthereisnoguaranteeofplausibleoraccurateresultsfromGenAI.Inouroperatorinstructionexample,thefoundationalmode

11、lfirstlearnswhatconstitutescomprehensibleandaccuratetext,withprocessdescriptionsbeingasmallsubset.Next5themodelisfine-tunedbylearningwhatoperatorinstructionslooklikeandhowtheycorrelatewithgivenmachinebreakdownrootcauses.However,thereisnoassurancethatthemodelwillcreatecorrectorhigh-qualityoperatorins

12、tructions.Ergonomicsillustratestheproblem.BecausetheGenAImodellacksinsightintotheprocessthatfixestherootcauseandthepeoplewhoaretheoperators,itmightoverlookpotentiallimitations,suchasinfeasiblemovementsorinaccessiblespaces.Asaresult,aqualityassessmentisalwaysrequiredtoensurethattherecommendedremediat

13、ionispracticalfromanergonomicperspective.GenAsgreatertechnicalcomplexityelevatestheimportanceofestablishingarobusttechnologicalfoundationtoharnessitscapabilitieseffectively.Withanumberofarchetypespossible,manufacturersmustunderstandthefactorsthatdetermineanoptimalchoice.Theycanapplythisknowledgetoin

14、tegrateGenAIintofactoryoperations,consideringthevalue-addingapplications,change-andpeople-relatedinitiatives,andrequiredtechnologicalinfrastructure.ManufacturersArePrioritizingGenAIforitsDisruptivePotentialBCGrecentlysurveyedmanufacturerstounderstandtheirperspectiveontechnologydevelopments.(SeeAbout

15、theSurvey/*)Regardlessoftheiraffinityfordigitaltechnology,manufacturingexecutivesrankedAl(includingGenAI)firstamongtechnologiesthatcouldpositivelydisrupttheiroperations.(SeeExhibit1.)ThepotentialROIwarrantstheirenthusiasm.ABCGanalysisfoundthattheuseofAlcouldenhanceshop-floorproductivitybymorethan20%

16、.ABOUTTHESURVEYBCGconductedaglobalsurveyfromJanuarythroughMarch2023toassessthelatesttechnologiesinthemanufacturingindustry.Approximately1,800respondentsfrom15countriesspanningNorthandSouthAmerica,Europe,andAsiatookpartinthestudy,witheachcountrycontributingmorethan100completedsurveys.Theparticipantsrepresentabroadarrayofproductionindustries,includingautomotive,capitalgoods,consumergoods,energy,IT,healthcare,andmaterials.Exhibit1-ManufacturingExec

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 研究报告 > 信息产业

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!