数据资产管理及运营体系研究设计报告.docx

上传人:王** 文档编号:941993 上传时间:2024-03-01 格式:DOCX 页数:53 大小:245.32KB
下载 相关 举报
数据资产管理及运营体系研究设计报告.docx_第1页
第1页 / 共53页
数据资产管理及运营体系研究设计报告.docx_第2页
第2页 / 共53页
数据资产管理及运营体系研究设计报告.docx_第3页
第3页 / 共53页
数据资产管理及运营体系研究设计报告.docx_第4页
第4页 / 共53页
数据资产管理及运营体系研究设计报告.docx_第5页
第5页 / 共53页
数据资产管理及运营体系研究设计报告.docx_第6页
第6页 / 共53页
数据资产管理及运营体系研究设计报告.docx_第7页
第7页 / 共53页
数据资产管理及运营体系研究设计报告.docx_第8页
第8页 / 共53页
数据资产管理及运营体系研究设计报告.docx_第9页
第9页 / 共53页
数据资产管理及运营体系研究设计报告.docx_第10页
第10页 / 共53页
亲,该文档总共53页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《数据资产管理及运营体系研究设计报告.docx》由会员分享,可在线阅读,更多相关《数据资产管理及运营体系研究设计报告.docx(53页珍藏版)》请在优知文库上搜索。

1、数据资产管理及运营体系研究设计报告一、数据资产管理基本情况以及相关标准1(一)研究背景1(二)基本概念2(三)相关理论及标准研究3二、数据资产管理及运营的主要内容5(一)数据资产管理的通用要求6(二)数据资产化阶段6(三)数据资产管理阶段7(四)数据资产运营阶段8三、数据所有权及确权问题研究9(一)数据所有权9(二)数据确权H四、数据资产的价值体现及影响因素16(一)影响数据资产价值的因素16(二)数据资产价值评估方法概述20(三)数据资产价值分析及其适用性21(四)数据定价27五、面向价值实现的数据资产管理体系28(一)数据管理职能29(二)数据运营31(三)技术平台33(四)保障措施34(

2、五)基于数据资产管理体系的规划建设36五、数据资产运营生态圈及产业链37(一)数据资产运营产业链关键要素37(二)数据资产产业发展路径研究42六、数据资产运营下一步要研究的问题50(一)数据资产的开放共享和合理利用50(二)数据资产运营的制度建设50(三)数据资产的增值途径51(四)数据资产的溯源管理52(五)探索适合电网企业的数据资产运营体系52一、数据资产管理基本情况以及相关标准(一)研究背景数据资产(dataasset)被认为是组织合法拥有或者控制的、可计量的、能为组织带来价值的数据资源。数据资产由数据组成,兼有无形资产和有形资产的特征,是一种全新的资产类别。随着大数据产业的发展、大数据

3、应用的深入,数据已被广泛认为是宝贵的资产,数据具有的巨大潜在价值得到了广泛认同,数据资产化日益受到各个国家、行业和组织的重视,数据资产的管理、应用以及标准制定成为当前研究的热点。目前,对数据资产的理解还未达成共识,数据资产的管理和应用仍然面临着诸多挑战。从组织的管理视角看,仍有许多组织的数据管理比较薄弱,如存在数据孤岛、缺乏数据标准、数据质量参差不齐,这些都阻碍了数据的进一步共享应用;加之组织难以对数据成本和数据价值进行评估,缺乏有效的数据资产管理运营方式,数据资产面临运营难和增值难的问题。从产业的发展视角看,由于数据权属问题尚未形成统一标准,数据流通和交易服务缺乏相关法律法规等有效监管机制,

4、尽管许多数据交易平台、大数据交易中心等纷纷成立,但目前总体规模仍然有限,尚未形成可持续的服务模式;此外,侵犯公民个人信息权益和隐私、企业间的数据纠纷等问题也频频暴露,这些问题扰乱了数据共享流通的市场秩序,制约了数据资产进一步融合应用。项目组通过梳理国内外数据资产管理的研究现状,围绕大数据发展对数据资产管理标准化的迫切需求,提出数据资产管理及运营体系的基本框架。(二)基本概念1 .数据、数据资产、数据管理、数据资产管理的基本概念;数据资产是指由企业拥有或者控制的,能够为企业带来未来经济利益的,以物理或电子的方式记录的数据资源,如文件资料、电子数据等。在企业中,并非所有的数据都构成数据资产,数据资

5、产是能够为企业产生价值的数据资源。传统数据管理是指利用计算机硬件和软件技术,对数据进行有效的收集、存储、处理和应用的过程。数据作为信息载体,更关注数据结构以描述数据间的内在联系,便于数据修改、更新和补充。数据资产管理是指规划、控制和提供数据及信息资产的一组业务职能,包括开发、执行和监督有关数据的计划、政策、方案、项目、流程、方法和程序,从而控制、保护、交付和提高数据资产的价值。数据资产管理需要充分融合业务、技术和管理,以确保数据资产保值增值。2 .区分数据管理、数据资源管理和数据资产管理传统数据管理:利用计算机硬件和软件技术,对数据进行有效的收集、存储、处理和应用的过程。数据作为信息载体,更关

6、注数据结构以描述数据间的内在联系,便于数据修改、更新和补充。数据资源管理:在包容传统数据管理要求的基础上,覆盖面更广。数据主要作为生产资源,关注目的就是去寻找手段,以有效地控制数据资源,更加强调组织、制度、流程、人员等方面的管理要求。数据资产管理:包括了传统数据管理、数据资源管理的相关内容,核心思路是把数据对象作为一种全新的资产形态,并以资产管理的标准和要求来加强相关机制和手段。3 .数据资产的发展阶段目前,国内外尚无成熟的数据资产管理标准可供参考,对数据资产管理定义、管理方法和管理过程等还未形成共识。根据相关研究,我们将数据资产的管理分为数据资产化、数据资产管理、数据资产运营3个阶段。数据资

7、产化过程应对现有数据资产的数据分布、数据活性等现状进行梳理,依据标准对数据资产的权属、质量、价值等进行评估,识别出权属在控制范围内的、有价值的数据资产,为后续的数据资产管理和运营提供支撑。数据资产管理过程可以进一步细分为核心过程和支撑过程。核心过程定义了一系列关键活动,涵盖数据资产生存周期的登记、应用、盘点、变更和处置等过程,数据资产的维护更新等可以通过盘点、变更、处置等过程进行管理;支撑过程包括与数据资产风控和价值相关的数据资产安全和审计等。通过规范数据资产管理的核心过程及支撑过程,为数据资产拥有者建立有效的数据资产管理环境提供指导,为建立数据资产管理工具或平台提供核心功能模块建议。数据资产

8、运营过程在数据资产管理工作的基础上,筛选价值高的数据,确定运营的业务指标,对数据进行定价,开展数据资产的运营。运营模式包括交易、置换、抵押等。在一个运营周期结束后,根据设定的运营指标,依据运营绩效评价标准对运营成效进行评估,查找运营过程中存在的问题和不足,从而不断提高运营能力。(三)相关理论及标准研究1.传统的资产管理理论传统的数据资产管理理论主要参考IT系统生命周期,基于信息资源规划(InformationResourcePIanning,简称IRP),指对企业生产经营所需要的信息,从采集、处理、传输到利用的全面规划。其核心是运用先进的信息工程和数据管理理论及方法,通过总体数据规划,打好数据

9、管理和资源管理的基础,促进实现集成化的应用开发。这种方法适合传统的面向企业内部相对稳定的应用需求,其数据是稳定的,可以通过有效方法建立稳定的数据模型,以适应行政管理上或业务处理上的变化能被计算机信息系统所适应。2.数据资产管理关键要素的相关理论及标准(数据资产评估、数据资产运营模式等)随着各类组织对数据资产的日益重视,数据资产标准的研制已成为国内外各标准化组织共同关注的热点,然而其尚处于起步阶段。数据资产。2019年12月中国资产评估协会制定了资产评估专家指引第9号一一数据资产评估(中评协(2019)40号),从数据资产的基本情况、基本特征、价值影响因素和应用商业模式等方面对评估对象进行多维刻

10、画,介绍了成本法、收益法和市场法3类评估方法,供评估机构及评估人员开展评估业务时参考。2019年6月4日,国家市场监督管理总局、国家标准化管理委员会发布了GB/T37550-2019电子商务数据资产评价指标体系,提出了由数据资产成本价值和数据资产标的价值组成的评价指标体系,并给出了二级指标项及相应的三级指标项,为电子商务数据资产价值的量化计算、评估评价提供了依据。信标委大数据标准工作组、国家信息技术服务标准工作组、中国通信标准化协会大数据技术标准推进委员会等纷纷开展了数据资产管理的研究工作,形成了数据资产管理的研究报告以及白皮书等成果,为数据资产标准的研制奠定了基础。数据资产质量评估相关标准包

11、括GBT25000.122017系统与软件工程系统与软件质量要求和评价(SQuaRE)第12部分:数据质量模型、GB/T25000.24-2017系统与软件工程系统与软件质量要求和评价(SQuaRE)第24部分:数据质量测量、GBT363442018信息技术数据质量评价指标等标准。数据开放共享。2017年,信标委大数据标准工作组立项了信息技术大数据政务数据开放共享第1部分:总则信息技术大数据政务数据开放共享第2部分:基本要求信息技术大数据政务数据开放共享第3部分:开放程度评价3项国家标准。2019年,全国信息安全标准化技术委员会开始制定信息安全技术政务信息共享数据安全技术要求。数据交易流通。2

12、014年,信标委大数据标准工作组开始了大数据交易标准的研究,先后完成了信息技术数据交易服务平台通用功能要求信息技术数据交易服务平台交易数据描述。2017年,全国信息安全标准化技术委员会开始了信息安全技术数据交易服务安全要求的制定,以上标准的研制为数据交易平台建设、数据交易的规范化提供了支撑。二、数据资产管理及运营的主要内容大数据时代给“数据资产管理”赋予了新的内涵,目前,国内外尚无成熟的数据资产管理标准可供参考,对数据资产管理定义、管理方法和管理过程等还未形成共识。项目研究将数据资产相关过程分为数据资产化、数据资产管理、数据资产运营3个阶段以及12个子内容:数据资产化 H一,数据资产管理数据资

13、产权属评估数据资产质量评估数据资产价值评估数据资产分类分级指南数据资产目录建设指南数据资产管理工具要求数据资产安全管理数据资产管理的通用要求数据资产运营数据资产管理审计数据资产运营指标管理数据资产运营绩效评价数据资产定价(一)数据资产管理的通用要求数据资产管理的通用要求是统领性、通用性的基础标准,数据资产管理的通用要求旨在为数据资产管理提供一套通用框架,主要为数据资产领域提供术语、对象、流程和保障机制等基本要求,并明确支撑管理对象的核心价值得以实现的各流程和活动间的逻辑关系,以形成对数据资产定义和管理范畴的共识。(二)数据资产化阶段数据资产化阶段包括数据资产权属评估、数据资产质量评估、数据资产

14、价值评估。数据资产权属评估需要依据有关法律法规,结合数据资产的可复制、可共享、可流动等特点,研究制定数据资产的所有权、使用权等权属的分类方法以及数据资产权属的评估流程与方法等。数据资产质量评估可在GB/T25000.12-2017系统与软件工程系统与软件质量要求和评价(SQUaRE)第12部分:数据质量模型、GB/T25000.24-2017系统与软件工程系统与软件质量要求和评价(SQuaRE)第24部分:数据质量测量、GB/T36344-2018信息技术数据质量评价指标等标准的基础上,考虑大数据环境下数据资产的流动性、可变性等特点,制定数据资产的质量评估方法与流程等。数据资产价值评估的研究应

15、该综合考虑不同行业领域的数据特点,覆盖经济价值、社会价值等不同价值类型,标准内容包括评估的要素、流程和方法等,同时应该结合数据资产的数量、质量变化因素预估其价值的变化趋势。(三)数据资产管理阶段数据资产管理阶段包括数据资产分类分级指南、数据资产目录建设指南、数据资产管理工具要求、数据资产安全管理、数据资产管理审计。1.数据资产分类分级指南数据资产分类分级指南是指对数据资产进行分类分级时,为满足数据安全管理、敏感数据管控、数据开放共享等需求,需规定数据资产分类分级的原则、模型、方法、编码规则和管理流程等,便于数据资产分类管理和共享。2、数据资产目录建设指南数据资产目录建设指南应规范编制指南、元数据规范和编码规范,编制指南主要规定数据资产目录体系组成以及目录编制实施的组织、流程和要求等,元数据规范主要规定元数据描述等,编码规范主要规定与目录相关的编码的表示形式、结构和维护规则等。3、数据资产管理工具数据资产管理工具要求应从技术架构、建设方案、访问接口、技术要求、测试要求等方面对数据资产管理的相关技术产品和管理平台进行规范,明确功能性、非功能性和标准依从性等要求,针对大数据的特性提供自动化、智能化的技术保障和支撑。4、数据资产安全管理数据资产安全管理应涵盖数据资产生存周期,规范数据资产管理

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 论文 > 管理论文

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!