应用时间序列分析期末上机实践报告.docx

上传人:王** 文档编号:92144 上传时间:2022-12-21 格式:DOCX 页数:18 大小:321.82KB
下载 相关 举报
应用时间序列分析期末上机实践报告.docx_第1页
第1页 / 共18页
应用时间序列分析期末上机实践报告.docx_第2页
第2页 / 共18页
应用时间序列分析期末上机实践报告.docx_第3页
第3页 / 共18页
应用时间序列分析期末上机实践报告.docx_第4页
第4页 / 共18页
应用时间序列分析期末上机实践报告.docx_第5页
第5页 / 共18页
应用时间序列分析期末上机实践报告.docx_第6页
第6页 / 共18页
应用时间序列分析期末上机实践报告.docx_第7页
第7页 / 共18页
应用时间序列分析期末上机实践报告.docx_第8页
第8页 / 共18页
应用时间序列分析期末上机实践报告.docx_第9页
第9页 / 共18页
应用时间序列分析期末上机实践报告.docx_第10页
第10页 / 共18页
亲,该文档总共18页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《应用时间序列分析期末上机实践报告.docx》由会员分享,可在线阅读,更多相关《应用时间序列分析期末上机实践报告.docx(18页珍藏版)》请在优知文库上搜索。

1、得分应用时间序列分析期末上机实践报告课程名称:应用时间序列分析学期:2014-2015-2学专姓学院:业:名:号:期:2015.07.03应用时间序列分析期末课程上机报告要求六、(30分)实践题(另交370页的题目、程序和答案纸)要求:系统复习各章上机指导的相关内容,从问题出发,解决三个具体时间序列数据的分析处理全过程(包含:1、数据的背景和拟用到的处理方法,提供可以独立运行的SAS程序,程序的主要运行结果和结果的解读;2、每个学生都必做ARIMA过程的较完整运用,包括数据的输入、输出,时序图、自相关图、偏相关图,并建立成功的拟合模型;3、自由选择其它两个数据和用到自己熟悉的时间序列分析程序过

2、程的处理方法(如趋势拟合、XlkGARCH模型等),但尽量不要三题都用同一个方法)。一、ARIMA模型数据来源:应用时间序列分析第5章习题5已知18671938年英国(英格兰及威尔土)绵羊的数量如表1所示(行数据),运用时间序列模型预测未来三年英国的绵羊数量。22032360225421652024207822142292220721192119213721321955178517471818190919581892191918531868199121112119199118591856192418921916196819281898185018411824182318431880196820

3、291996193318051713172617521795171716481512133813831344138414841597168617071640rr1./八1.zZJZ1.(1)确定该序列的平稳性。(2)选择适当模型,拟合该序列的发展。(3)利用拟合模型预测1939-1945年英国绵羊的数量。1-(1)平稳性检验建立临时数据集IhfOldataIhfO1;inputX鲍;difx=dif(x);y=log(x);cards;22032360225421652024207822142292220721192119213721321955178517471818190919581892

4、1919185318681991211121191991185918561924189219161968192818981850184118241823184318801968202919961933180517131726175217951717164815121338138313441384148415971686170716401611163217751850180916531648166516271791procgplotdata-Ihf01;pIotx*tdifx*ty*t;symboIc=redi=joinv=star;run;procarima;identifyvar=x;run

5、;图1.I序列X时序图自相关图如图1-2所示。Autocorrelatkns-19876543 2 1 0 1 2 3 4 5 6 7 8 91StdError049589.0831.00000145261.8130.81274237545.6810.75714331322.6150.63164428288.1880.57045527764.9130.55990626607.8470.53657723678.1220.47749819733.1390.39793916222.4900.327141013497.1940.272181111176.8780.22539128071.4860.18

6、2831374S0.4690.15085147377.4650.14877158557.4410.17257169873.3890.199101710206.7470.20583188201.1740.16538CovarianceConelat ionmarksMo standard errors出出出山.IB III III 出出出 出山出 出山出出.出出出出出出出.0.1178510.1924330.2301180.2530550.2703260.2859790.2996350.3100230.3170380.3216920.3248750.3270400.3284580.3294180

7、.3303500.3316000.3332560.335017我们可以判定该序列从图中我们发现序列的自相关系数递减到零的速度相当缓慢,是不平稳的。白噪声检验结果如图1-3所示。检验结果显示,在各阶延迟下1.B检验统计量的P值都非常小(0.0001),所以我AutocorrelatkxCheckforWhiteNoiseToagChi-SquareDFPfChiSqAutocorrelations6210.636.00010.9130.7570.6320.5700.5600.53712265.3212.00010.4770.3980.3270.2720.2250.18318282.7718Itl

8、1.agMIJAR120.35697-0.337060.108290.108533.30-3.110.00150.002813VariancelEstimate0.001637StdErrorEstimate0.040466AIC-251.975SBC-247.45NumberofResiduals71出AICandSBCdonotincludelogdeterminantCorrelationsofParameterEstimatesParameterARI,1ARI,2DS1.11.0000.098AR1;20.0981.000残差白噪声检验结果如图2-3所示。AutocorreIationCheckofResiduaIsTo61218hig20280999CE 2 3CDF101622r1 9 0 13 C 8 4 2 2 F 9 7 6 O 6 8 8 9 6 6 O JcS322 0 2 00 3 8 0 6力力。心心18489 .09,010.0aAutocorre220400542O.O-O.(MO.O-O,1892 2 09 5 7 1心心心770556 09023056 8 622 5 5 0 6 4 0 VwvQQ-O.Q参数显著性检验结果显示两参数均残差检验结果显示残差序列可视为白噪声

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 资格/认证考试 > 计算机等级考试

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!