《工业CT技术参数对性能指标的影响.docx》由会员分享,可在线阅读,更多相关《工业CT技术参数对性能指标的影响.docx(13页珍藏版)》请在优知文库上搜索。
1、1.1 工业CT概述CT即计算机断层成像技术,是英语ComPUtedTOmOgraPhy的缩写。而tomography一词源于希腊字tomos,意思是一种能对单个平面照相,同时去除其他平面结构影响的X射线照相技术。用传统人体透视方法,三维的人体沿X射线的方向被压缩成了两维的图像,体内所有骨骼结构和组织都重叠在一起,使得感兴趣对象的清晰程度大为下降。这样尽管它有极好的空间分辨率(分辨紧邻的高反差物体的能力),可是最后只有很差的低反差分辨率(从背景上区分低反差物体的能力)。因此导致了传统断层成像技术的出现8。传统断层成像的根本原理如图1所示。先考虑病人体内两个孤立的点A和B:A点在焦平面上而B点在
2、焦平面以外。A点和B点投射到X胶片上的阴影对应地标注为Al和B1,如图1(a)。这时胶片上生成的图像和传统照相完全没有区别,然后使X射线源和X胶片同步地沿相反方向运动(例如如下图,X射线源向左运动而X胶片向右运动)到第二个位置。我们要确保固定点A生成的阴影A2与A点在第一位置生成的阴影AI重合。这一点很容易通过设置X射线源和X胶片移动的距离,使它们正比于对A点相应的距离来实现,如图1(b)。然而固定点B在第二位置生成的阴影B2与Bl是不重合的。这就是因为B点不在焦平面上,从B点到X射线源和B点到胶片的距离比偏离了对A点相应的距离比。当X射线源和胶片沿一条直线(自然是相反方向)连续运动时,B点生
3、成的阴影形成了一个直线段,这个性质对焦平面以外上下的任何点都是适用的。应该注意到不聚焦的那些点生成的阴影强度降低了,这是由于阴影分布到一个扩展了的面积上。而所有焦平面上的点都保持了原来胶片上的图像位置,其阴影仍然是一个点,相应的强度没有减小。(OQE原理虽然这种断层成像技术在生成清晰的感兴趣平面的图像方面取得一些成功,但它们并没有增加物体的反差,也不能根本上去除焦平面以外的其他结构。明显损害了图像的质量。现代断层成像技术即CT,是基于从多个投影数据应用计算机重建图像的一种方法,现代断层成像过程中仅仅采集通过特定剖面(被检测对象的薄层,或称为切片)的投影数据,用来重建该剖面的图像,因此也就从根本
4、上消除了传统断层成像的“焦平面以外其他结构对感兴趣剖面的干扰,“焦平面内结构的比照度得到了明显的增强;同时断层图像中图像强度(灰度)数值能真正与被检对象材料的辐射密度产生对应的关系,发现被检对象内部辐射密度的微小变化。事实上,低比照度可探测能力(LCD)是CT和常规射线照相之间的关键区别。这也是CT在临床上迅速得到接受的最主要因素。需要强调的是,除了CT技术以外的所有无损检测技术都没有这个能力。因为没有重叠结构的干扰,图像的解释要比传统射线照相容易得多。新的购置者能很快看懂CT的结果因此从上世纪70年代初英国EMl出现世界上第一台医用CT扫描设备以来,CT技术一直迅速开展。现在CT已成为最常用
5、的临床诊断工具之一。而近年来螺旋CT的出现又使这个技术前进一大步。工业CT的根本原理与医用CT相同,因此也具有医用CT所有的根本特点。其检测图像没有被检测的“切片以外结构材料的干扰可发现检测对象内部极小的材料密度变化。同时图像的解释要比传统射线照相容易得多。因此工业CT也被广泛用来检查机械零部件内部结构或装配正确性,还可以用于非破坏测量零件内部尺寸。近年来,鉴于各种其他无损检测手段的大量研究没有得到令人满意的结果,工业CT又被认为是检查毒品和爆炸物最有应用前景的手段。值得注意的是CT检测得到的是辐射密度分布图像,更专业一些应当称之为射线线性衰减系数的分布图像。由于在大多数情况下辐射密度与材料密
6、度有近似的对应关系,人们往往把CT图像误认为就是一般(材料)密度的分布图像。这种混淆在很多实际应用情况下并无很大害处,然而在精确定量分析检测结果时就有可能导致一些错觉。由于检测对象的不同,工业CT与医用CT差异很大,以至从外表上几乎看不出多少相似的地方。医用CT的检测对象根本上是人体或器官,材料密度和外形尺寸的变化范围相比照拟小。但是工业CT的检测对象就要广泛得多,从微米级的集成电路到超过一米的大型工件,从密度低于水的木材或其它多孔材料到高原子序数的重金属材料都是CT检测对象;关心的检测要求从各类内部缺陷到装配结构和尺寸测量,也各不相同。这就使不同用途的工业CT系统所用的射线源、射线探测器和系
7、统结构很不相同,甚至工业CT系统之间的外形也大不相同。从这个意义上说,理解工业CT比理解医用CT也许更加困难。工业CT的缺点是因为其技术复杂,设备价格相对高昂。设备的使用和维护相对难度也较大。另外重建断层图像需要采集的数据量庞大检测速度较慢。1.2 工业CT的主要部件和它们的特点一个工业CT系统至少应当包括射线源,辐射探测器,样品扫描系统,计算机系统(硬件和软件)等。1.2.1 射线源的种类射线源常用X射线机和直线加速器,统称电子辐射发生器。电子盘旋加速器从原那么上说可以作CT的射线源,但是因为强度低,几乎没有得到实际的应用。X射线机的峰值射线能量和强度都是可调的,实际应用的峰值射线能量范围从
8、几KeV到450KeV;直线加速器的峰值射线能量一般不可调,实际应用的峰值射线能量范围从116MeV,更高的能量虽可以到达,主要仅用于实验。电子辐射发生器的共同优点是切断电源以后就不再产生射线,这种内在的平安性对于工业现场使用是非常有益的。电子辐射发生器的焦点尺寸为几微米到几亳米。在高能电子束转换为X射线的过程中,仅有小局部能量转换为X射线,大局部能量都转换成了热,焦点尺寸越小,阳极靶上局部功率密度越大,局部温度也越高。实际应用的功率是以阳极靶可以长期工作所能耐受的功率密度确定的。因此,小焦点乃至微焦点的的射线源的使用功率或最大电压都要比大焦点的射线源低。电子辐射发生器的共同缺点是X射线能谱的
9、多色性,这种连续能谱的X射线会引起衰减过程中的能谱硬化,导致各种与硬化相关的伪像。同位素辐射源的最大优点是它的能谱简单,同时有消耗电能很少,设备体积小且相对简单,而且输出稳定的特点。但是其峡点是辐射源的强度低,为了提高源的强度必须加大源的体积,导致“焦点尺寸增大。在工业CT中较少实际应用。同步辐射本来是连续能谱,经过单色器选择可以得到定向的几乎单能的高强度X射线,因此可以做成高空间分辨率的CT系统。但是由于射线能量为20KeV到30KeV,实际只能用于检测Imm左右的小样品,用于一些特殊的场合。1.2.2 辐射探测器工业CT所用的探测器有两个主要的类型一分立探测器和面探测器1.2.2.1 分立
10、探测器常用的X射线探测器有气体和闪烁两大类。气体探测器具有天然的准直特性,限制了散射线的影响;几乎没有窜扰;且器件一致性好。缺点是探测效率不易提高,高能应用有一定限制;其次探测单元间隔为数毫米,对于有些应用显得太大。应用更为广泛的还是闪烁探测器。闪烁探测器的光电转换局部可以选用光电倍增管或光电二极管。前者有极好的信号噪声比,但是因为器件尺寸大,难以到达很高的集成度,造价也高。工业CT中应用最广泛的是闪烁体一光电二极管组合。应用闪烁体的分立探测器的主要优点是:闪烁体在射线方向上的深度可以不受限制,从而使射入的大局部X光子被俘获,提高探测效率。尤其在高能条件下,可以缩短获取时间;因为闪烁体是独立的
11、,所以几乎没有光学的窜扰;同时闪烁体之间还有铝或其他重金属隔片,降低了X射线的窜扰。假设将隔片向前延伸形成准直器还可以挡住散射X射线;分立探测器可以到达1620bits的动态范围,而且不致因为散射和窜扰性能降低。分立探测器的读出速度很快,在微秒量级。同时可以用加速器输出脉冲来选通数据采集,最大限度减小信号上叠加的噪声。分立探测器对于辐射损伤也是最不敏感的。分立探测器的主要缺点是像素尺寸不可能做得太小,其相邻间隔(节距)一般大于0.1mm:另外价格也要贵一些。有一些关于CdZnTe半导体探测器阵列用于工业CT的报导。半导体探测器俗称为固体电离室,由于本身对X射线灵敏,无须外加闪烁体,这种探测器尺
12、寸可以做得较小,没有光学的窜扰。如果探测单元之间没有重金属隔片,仍然无法防止散射X射线的影响。应当说这是一种很有应用前景的CT探测器,但目前还有余辉过长等一些技术问题需要解决。1.2.2.2 面探测器面探测器主要有三种类型:高分辨半导体芯片、平板探测器和图像增强器。半导体芯片又分为CCD和CMOS。CCD对X射线不敏感,外表还要覆盖一层闪烁体将X射线转换成CCD敏感的可见光。平板探测器和图像增强器木质上也需要内部的闪烁体先将X射线转换成这些器件敏感波段的可见光。半导体芯片具有最小的像素尺寸和最大的探测单元数,像素尺寸可小到10微米左右,探测单元数量取决于硅单晶的最大尺寸,一般直径在50mm以上
13、。因为探测单元很小,信号幅度也很小,为了增大测量信号可以将假设干探测单元合并。为了扩大有效探测器面积可以用透镜或光纤将它们光学耦合到大面积的闪烁体上。用光纤耦合的方法理论上可以把探测器的有效面积在一个方向上延长到任意需要的长度。使用光学耦合的技术还可以使这些半导体器件远离X射线束的直接辐照,防止辐照损伤。用半导体芯片也可以组成线探测器阵列,每个探测单元对应的闪烁体之间没有隔离或者在许多探测单元上覆盖一整条闪烁体,具有面探测器的根本特征,除了像素尺寸小的优点以外,其性能无法与分立探测器相比。图像增强器是一种传统的面探测器,是一种真空器件。名义上的像素尺寸V100m,直径152-457mm(618
14、in)。读出速度可达1530帧s,是读出速度最快的面探测器。由于图像增强过程中的统计涨落产生的固有噪声,图像质量比拟差,一般射线照相灵敏度仅78%,在应用计算机进行数据叠加的情况下,射线照相灵敏度可以提高到2%以上。另外的缺点就是易碎和有图像扭曲。平板探测器通常用外表覆盖数百微米的闪烁晶体(如CSl)的非晶态硅或非晶态硒做成。像素尺寸127或200m,平板尺寸最大约45Cm(18in)。读出速度大约37.5帧/S。优点是使用比拟简单,没有图像扭曲。图像质量接近于胶片照相,根本上可以作为图像增强器的升级换代产品。主要缺点是外表覆盖的闪烁晶体不能太厚,对高能X射线探测效率低;难以解决散射和窜扰问题
15、,使动态范围减小。在较高能量应用时,必须对电子电路进行射线屏蔽。一般说使用在15OkV以下的低能效果较好。面探测器的根本优点是不言而喻的一它有着比线探测器高得多的射线利用率,特别是适合于DR成像,可以到达实时或准实时的动态照相。面探测器也比拟适合用于三维直接成像。所有面探测器由于结构上的原因都有共同的缺点,即射线探测效率低;无法限制散射和窜扰;动态范围小等。高能范围应用效果较差。1.2.3样品扫描系统样品扫描系统形式上像一台没有刀具的数控机床,从本质上说应当说是一个位置数据采集系统,从重要性来看,位置数据与射线探测器测得的射线强度数据并无什么不同。仅仅将它看成一个载物台是不够全面的,尽管设计扫
16、描系统时首先需要考虑的是检测样品的外形尺寸和重量,要有足够的机械强度和驱动力来保证以一定的机械精度和运动速度来完成扫描运动。同样还要考虑,选择最适合的扫描方式和儿何布置;确定对机械精度的要求并对各局部的精度要求进行平衡;根据扫描和调试的要求选择适宜的饯感盎以及在计算机软件中对扫描的位置参数作必要的插值或修正等等。工业CT常用的扫描方式是平移一旋转(TR)方式和只旋转(Re)方式两种。医学领域内后者比前者更为先进。然而在工业应用领域应当说是各有特点。只旋转扫描方式无疑具有更高的射线利用效率,可以得到更快的成像速度;然而,平移一旋转的扫描方式的伪像水平远低于只旋转扫描方式;可以根据样品大小方便地改变扫描参数(采样数据密度和扫描范围),特别是检测大尺寸样品时其优越性更加明显;源一探测器距离可以较小,提高信号幅度;以及探测器通道少可以降低系统造价便于维护等。该两种扫描方式从系统设计上还是有所不同的,有的系统声称同时具有两种扫描方式的大都还是基于Ro方式的结构,在进行TR扫描时只是局部防止了RO扫描的固