线性代数教学资料chapter4.ppt

上传人:王** 文档编号:469864 上传时间:2023-09-09 格式:PPT 页数:39 大小:762KB
下载 相关 举报
线性代数教学资料chapter4.ppt_第1页
第1页 / 共39页
线性代数教学资料chapter4.ppt_第2页
第2页 / 共39页
线性代数教学资料chapter4.ppt_第3页
第3页 / 共39页
线性代数教学资料chapter4.ppt_第4页
第4页 / 共39页
线性代数教学资料chapter4.ppt_第5页
第5页 / 共39页
线性代数教学资料chapter4.ppt_第6页
第6页 / 共39页
线性代数教学资料chapter4.ppt_第7页
第7页 / 共39页
线性代数教学资料chapter4.ppt_第8页
第8页 / 共39页
线性代数教学资料chapter4.ppt_第9页
第9页 / 共39页
线性代数教学资料chapter4.ppt_第10页
第10页 / 共39页
亲,该文档总共39页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《线性代数教学资料chapter4.ppt》由会员分享,可在线阅读,更多相关《线性代数教学资料chapter4.ppt(39页珍藏版)》请在优知文库上搜索。

1、1THE EIGENVALUE PROBLEM4 THE EIGENVALUE PROBLEM2THE EIGENVALUE PROBLEMOverviewlIn section 4.4 we move on to the general case,the eigenvalue problem for(nn)matrices.The general case requires several results from determinant theory,and these are summarized in section 4.2.l The eigenvalue problem is of

2、 great practical importance in mathematics and applications.lIn section 4.1 we introduce the eigenvalue problem for the special case of(22)matrices;this special case can be handled using ideas developed in Chapter 1.3THE EIGENVALUE PROBLEMCore sections The eigenvalue problem for(22)matrices Eigenval

3、ues and the characteristic polynomial Eigenvectors and eigenspaces Similarity transformations and diagonalization 4THE EIGENVALUE PROBLEM21113141111011430212102114.1 The eigenvalue problem for(22)matricesA5THE EIGENVALUE PROBLEM:For an(n n)matrix,find all scalars such Definitionthat the e 4.1.1quaio

4、nA AXXhas a nonzero solution,such a scalar is called an eigenvalue of,and any nonzero(n 1)vector satisfying is called an eigenvector corresponding to.AXAXXAll scalarsNonzero solution/Infinitely many solution 1.The eigenvalue problem6THE EIGENVALUE PROBLEMThe Geometric interpretation of Eigenvalue an

5、d eigenvector AXX00XAXXAX7THE EIGENVALUE PROBLEMThe calculation of Eigenvalue and eigenvector AXX?,?X0AXX0()AI XHomogeneous Systems0()XStep 1:find such thatall scalar is singular.AI0(-)Step 2:given a scalar such that is singular,find such that all nonz ero vectorsXAI XAI12000det()()(),is singular nA

6、Ar AnAXXA AAlinearly dependent8THE EIGENVALUE PROBLEMEigenvalue and eigenvectors for(22)matrices00is singular.abAIcdabcdabAcd9THE EIGENVALUE PROBLEM()(2adadbc)0=?abcdabAcd22det()121112ad=aadbc=aA10THE EIGENVALUE PROBLEMExample:Find all eigenvalues and eigenvectors of A,where 2625Asolution:The matrix

7、 has the form526 2AAII 11THE EIGENVALUE PROBLEM2(1)is singular if and only if52120or 320AI()().212since 3221it follows that is singular if and only if2 or 1()(),AI12THE EIGENVALUE PROBLEM112222222323226400220331(),forAIxxXxxxx122 or 12625A13THE EIGENVALUE PROBLEM21222223142216300110221(),forAIxxXxxx

8、x for a given eigenvalue,there are infinitelymany eigenvectors correspondNointe thag tto.122 or 12625A14THE EIGENVALUE PROBLEM4.2 Determinants and the eigenvalue problem(omit)4.3 Elementary operations and determinants(omit)15THE EIGENVALUE PROBLEM4.4 Eigenvalues and the characteristic polynomial(2)G

9、iven an eigenvalue,find all vectors such that(0.(Such vectors are the eigenvectors corresponding to th ne eigenvalonzeroue.)XAI)X(1)Find such that is singular.(or =0).(Such scalars are tall scalarhe eigenvas lues of)AIAIAThe eigenvalue problem for an(nn)matrix two pahsas:rtA16THE EIGENVALUE PROBLEME

10、xample:Use the singularity test to determine the eigenvalues of the matrix A,where 112330111AIn this section we focus on part 1,finding the eigenvalues.is singular0AIdet(AI)17THE EIGENVALUE PROBLEMsolution:A scalar is an eigenvalue of if and only if is singular.such that0AAIdet(AI)where is the matri

11、x given by111000330021100111033211AIAI112330111A18THE EIGENVALUE PROBLEM32we have 1110332115632det(AI)()()123from the singularity test,we see that is singularif and only if 02 or 3AI,112330111A1231122331235500aaadet(A)19THE EIGENVALUE PROBLEMThe characteristic polynomial111212122212nnnnnnaaaaadeta(A

12、aaaI)Let be an(nn)matrix.TheTheorem:is a polynomial of degree n n i n.det(AIA)20THE EIGENVALUE PROBLEM Let be an(nn)matrix.The nth-degree polynomial,is calledDefinition:characteristi the for.c polyno mialAp()det(AI)A:Let be an(nn)matrix,and let be the characteristic polynomial for.then the eigenvalu

13、es of are precisely the rootTheores of 0m.ApAAp()characteristic polynomialp()det(AI)0p()det(AI)characteristic equation21THE EIGENVALUE PROBLEM(1)an(nn)matrix can have no more than n distinct eigenvalues.(2)an(nn)matrix always has at least one eigenvalue.The number of times the factor()appears in the

14、 factorization of given above is calledalgebraic multiplicity of the rp)r(22THE EIGENVALUE PROBLEMk1 Let be an(nn)matrix,and let be an eigenvalue of.Then (1)is an eigenvalue of;1(2)If is nonsingular,then is an eigenvalue of;(3)If c is any scalar,then+c is an Theorem:k-AAAAAeigenvalue of AcI.Special

15、Results)(Af2aAbAcI)(f2abc111(1)kkkkA XA(AX)A(X)(AX)111(2)or 0111110ndet(AI)det(AA A)det(A(IA)det(A)det(IA)det(IA)()det(AI)(3)(AcI)XAXcXXcX(c)X111(2)AXXXA XXA X23THE EIGENVALUE PROBLEM0TTdet(AI)(det(AI)det(AI)00det(A)det(AI):Let be an(nn)matrix.Then and haveTheoremsame eig thenve.aluesTAAA Let be an(

16、nn)matrix.Then is singTheorem:if and only ifular =0 is an eigenvalue of.AAA24THE EIGENVALUE PROBLEM3232:Let 22 and for anymatrixdefine the matrix polynomialby22where Iis the identity matriprove that if is an eigenvalue of,then thenumber is an ei Examplegxq(t)ttt;(n n)H,q(H)q(H)HHHI,(n n)Hq().envalue of the matrix q(H).25THE EIGENVALUE PROBLEMHXX3232323222222222q(H)X(HHHI)XH XH XHXIXXXXX()Xq()X32 22q(t)ttt 26THE EIGENVALUE PROBLEM4.5 Eigenvectors and EigenspacesEigenspaces and Geometric Multiplic

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 高等教育 > 大学课件

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!