《华北理工大学环境工程原理习题及解答第6章 沉降.docx》由会员分享,可在线阅读,更多相关《华北理工大学环境工程原理习题及解答第6章 沉降.docx(11页珍藏版)》请在优知文库上搜索。
1、第六章沉降6.1直径60Um的石英颗粒,密度为2600kgm3,求在常压下,其在20的水中和20的空气中的沉降速度(己知该条件下,水的密度为998.2kgm3,黏度为LoO5xlO-3Pas:空气的密度为L205kgm3,黏度为1.8110-5Pas)解:(1)在水中假设颗粒的沉降处于层流区,由式(6.2.6)得:18l8IOO5lO,检验:Rg=600飞3.13QI。飞998,2=OJ862eP1.005l3位于在层流区,与假设相符,计算正确。(2)在空气中应用K判据法,得QQ(nl-n)Nx0*Vx9811205x2600K=2J”-fS:L;=20.336”(I8lxl05f所以可判断沉
2、降位于层流区,由斯托克斯公式,可得:(d-Q)e2600x981(600-6V,中J_L=0.28ms1818l8lxl0w56.2 密度为2650kgm3的球形颗粒在20C的空气中自由沉降,计算符合斯托克斯公式的最大颗粒直径和服从牛顿公式的最小颗粒直径(已知空气的密度为1.205kgm3,黏度为1.81IO5Pas)。解:如果颗粒沉降位于斯托克斯区,则颗粒直径最大时,ReP=四*2所以,=2JL,同时q=5LJOfi18所以d,=32/j,代入数值,解得4=7.22Xlorm兀()g同理,如果颗粒沉降位于牛顿区,则颗粒直径最小时,Rep=也空=10006.3 粒径为76Um的油珠(不挥发,可
3、视为刚性)在20的常压空气中自由沉降,恒速阶段测得20s内沉降高度为2.7mo已知20时,水的密度为998.2kgm3,黏度为1.005xl0-3Pas:空气的密度为1.205kgm3,黏度为1.8110-5PaSo求:(1)油的密度:(2)相同的油珠注入20C水中,20s内油珠运动的距离。解:(1)油珠在空气中自由沉降的速度为ul=LZs=2.1/20=0.35ms假设油珠在空气中自由沉降位于层流区,由斯托克斯公式U(vuQm218I8,I8l8IIO,O.135皿蔺,3=T+=、,+1.205=777.4kgm398(76xl0*)检验油珠的雷诺数为ReP=把=76XKf(H3?.25=6
4、82I81X10-i属于层流区,计算正确。(2)假设油珠在水中自由上浮位于层流区,由斯托克斯公式=(i,E=(9982-777.4)x98Ix(76XKrr=6,2*1818l005l,、HSOaUtp(76xl0-fc)x692xl-4x9982计算油珠的雷偌数Re”=,匕=?!=0.052直径为5mm的小球投入容器中,每隔3s投一个,则:(1)如果油是静止的,则容器中最多有几个小球同时下降?(2)如果油以0.05ms的速度向上运动,则最多有几个小球同时下降?解:(1)首先求小球在油中的沉降速度,假设沉降位于斯托克斯区,则二(%)M=(2650-890)x9.8呻XK)T)二0酒1818x0
5、32检验Re=丝=/43*=i.o4PPdpp,对上式积分得,J:力=J18得f=-箸勿n(I(I-M或=,(|(1-eF),其中为终端沉降速度,丹=(=W82)x98呻4叫=060.2m/s1818x1005x10“检验R%=迫2=LM-。如*2=9BJ*1oIlUKr4MX32XO2I . I-1 I =Llx 10*4m Jllj I6.6 落球黏度计是由一个钢球和一个玻璃筒组成,将被测液体装入玻璃筒,然后记录下钢球落下一定距离所需要的时间,即可以计算出液体黏度。现在已知钢球直径为IOmm,密度为7900kgm3,待测某液体的密度为QOOkg/nP,钢球在液体中下落20Omm,所用的时间
6、为9.02s,试求该液体的黏度。解:钢球在液体中的沉降速度为=L5=200109.02=0.022m/s假设钢球的沉降符合斯托克斯公式,则16.35Pa s(%-)gd:_(7900-13Q)9.81(101(,丫18-180.022检验:R竽照笔2假设正确。6.7 降尘室是从气体中除去固体颗粒的重力沉降设备,气体通过降尘室具有一定的停留时间,若在这个时间内颗粒沉到室底,就可以从气体中去除,如下图所示。现用降尘室分离气体中的粉尘(密度为4500kgm3),操作条件是:气体体积流量为6m3s,密度为0.6kgm3,黏度为3.0乂10川6,降尘室高2m,宽2m,长5mo求能被完全去除的最小尘粒的直
7、径。含尘气体净化气体降尘室图6-1习题6.7图示解:设降尘室长为/,宽为b,高为九则颗粒的停留时间为“=/4,沉降时间为沉=hu,i当“2友时,颗粒可以从气体中完全去除,幅=f沉对应的是能够去除的最小颗粒,即lui=hut因为%=,所以ul=色L=包=6=o.6m/st.t/hbIb5-2假设沉降在层流区,应用斯托克斯公式,得I8x3ls69 81x(45-0 6)=8.57l-5m = 85.7 um检验雷诺数也=857XJfP 3lOT1.032,假设错快。P12lOT假设沉降符合艾伦公式,则%=0.27也三座应1所以(0.02尸()(i)Q2T(prp)gV027X(2240-I(M)O
8、)981-=2A210m检验Ry誓=R第迺=3.5在艾伦区,假设正确。所以能够去除的颗粒最小粒径为2.1210-4mo6.9 质量流量为l.lkg/s、温度为20C的常压含尘气体,尘粒密度为1800kgm3,需要除尘并预热至400C,现在用底面积为65m2的降尘室除尘,试问(1)先除尘后预热,可以除去的最小颗粒直径为多少?(2)先预热后除尘,可以除去的最小颗粒直径是多少?如果达到与(1)相同的去除颗粒最小直径,空气的质量流量为多少?(3)欲取得更好的除尘效果,应如何对降尘室进行改造?(假设空气压力不变,20空气的密度为L2kgm3,黏度为1.8lxIO5Pas,400C黏度为331i5Paso
9、)解:(1)预热前空气体积流量为以=0917m%,降尘室的底面积为65m2I)所以,可以全部去除的最小颗粒的沉降速度为q二-2=7=0.0141ms假设颗粒沉降属于层流区,由斯托克斯公式,全部去除最小颗粒的直径为1.61X 10-5m = 16. IumII8u_JIgxtKtxWFOEtvC-p)6V(800-l2)x9.81检验雷诺数Re-华侬=。必2假(2)预热后空气的密度和流量变化为7Q1I1=1.2X=0.522kgn?,体积流量为qA-=2.1lm3s273+400QS22可以全部去除的最小颗粒的沉降速度为凡=-L=二!=0325ms同样假设颗粒沉降属于层流区,由斯托克斯公式,全部
10、去除最小颗粒的直径为OdminIut-= jl8 33!IO,XOO325 V (R-02 x9|3.31X 105m =33.Ium检验雷诺数Rv贽=.ML必=0,02假设正确Pd=16.1Um的颗粒在400C空气中的沉降速度为凡=9厂加=(L)X98(E)二0W768m/s18x331XK)T要将颗粒全部除去,气体流量为q=Ant=65X0.00768=0.5m7s质量流量为0.5X0.522=0.261kgs(3)参考答案:将降尘室分层,增加降尘室的底面积,可以取得更好的除尘效果。6.10 用多层降尘室除尘,已知降尘室总高4m,每层高0.2m,长4m,宽2m,欲处理的含尘气体密度为lkgm3,黏度为3xl(PPaS尘粒密度为3000kgm要求完全去除的最小颗粒直径为20um,求降尘室最大处理的气体流量。解:假设颗粒沉降位于斯托克顿区,则颗粒的沉降速度为E(3-398h(2OXg侬I83xl5检验Re,=吧=2xMO*=001452,假设正确降尘室总沉降面积为=2042=160m2所以最大处理流量为或=Au=1600.0218=3.488m3s6.11 用与例题相同的标