《医疗人工智能产业发展情况分析.docx》由会员分享,可在线阅读,更多相关《医疗人工智能产业发展情况分析.docx(7页珍藏版)》请在优知文库上搜索。
1、医疗人工智能产业发展情况分析一、市场规模全球人工智能医疗器械市场规模从2016年的0.87亿美元增长至2020年的3.56亿美元,2016至2020年的年复合增长率为42.4队预计未来五年将增长至2025年的177.02亿美元,2020年至2025年的年复合增长率将为118.5%,2030年将进一步达1,136.77亿美元。我国人工智能影像医疗器械处于初期起步的快速发展阶段,随着市场需求不断增加,2020年底药监局启动了对影像辅助诊断医疗器械的注册批准,开启了我国医学影像人工智能辅助诊断产品从研发到落地的商业化推进之路。伴随监管审批效率的逐渐提高,近两年我国的人工智能医学影像诊断市场将进入爆发
2、式增长。在国家政策对医疗产业与前沿技术融合的持续推动下,我国医疗产业正由医疗信息化阶段逐渐步入医疗数据智能化阶段。预计2020年至2024年我国医疗大数据解决方案市场将保持快速增长。预计将由2019年的105亿元增长至2024年的577亿元,复合年增长率达40.5%o二、行业技术应用现状及优势20世纪60年代医生开始利用计算机技术阅读X射线光片,20世纪80年代计算机辅助诊断系统成为医学影像诊断的一个研究方向。从计算机阅读到辅助诊断的研发,医生开始逐渐将人工智能纳入到了医学影像的临床应用中。人工智能在医学影像领域的临床应用主要在辅助诊断环节,应用计算机视觉及深度学习技术,集中应用于图像识别、病
3、变检出和良恶性判断等。一方面,利用人工智能的计算机视觉技术对患者的医学影像识别获取重要信息,为经验不足的影像科医生提供帮助,提高其阅片效率;另一方面,基于深度学习技术通过大量已有影像数据和临床信息对模型进行训练,使其具备智能化辅助诊断疾病的功能,在临床中帮助医生降低漏诊、误诊概率。AI阅片与人工阅片对比,具备高效率、高准确度、客观性、信息利用率高且知识经验传承高的优势特点,能够帮助影像科医生提升阅片的效率和质量,有效缓解我国医学影像医师资源紧张的状况。目前我国医学影像数据的年增长率约为30%,而放射科医师数量的年增长率为4.1%,放射科医师的数量增长速度远不及影像数据的增速,且随着分级诊疗的推
4、进和基层医疗需求的释放,未来基层医生处理医学影像数据的压力会越来越大,医学影像阅片及诊断需求将无法得到有效的满足。人工智能技术在医学影像领域的应用能够充分发挥其高效且准确的优势,缓解医生阅片压力,切实助力分级诊疗的推动和基层医院的建设。三、行业发展趋势1、政策推动标准体系建设医疗Al行业的相关政策频出,推动技术研发成果加速落地及标准化体系建立。2017年7月国务院发布的新一代人工智能发展规划,首次在国家层面对人工智能技术内容进行全盘布局,重点对2030年我国新人工智能发展的总体思路、战略目标和主要任务、保障措施进行系统的规划和部署。2018年4月国务院发布关于促进“互联网+医疗健康”发展的意见
5、,明确将健全“互联网医疗健康”服务体系。从医疗、公共卫生、家庭医生签约、药品供应保障、医保结算、医学教育和科普、人工智能应用等方面推动互联网与医疗健康服务相融合,同年政府提出人工智能向基层医疗进行渗透。2019年8月科技部发布国家新一代人工智能开放创新平台建设工作指引提出推广人工智能治疗新模式新手段,探索人机协同智能诊疗体系的建设。明确了2020年进一步提出未来的建设指南,期望在2023年率先在医疗等领域初步建成人工智能标准体系,智能医疗将围绕医疗数据、医疗诊断、医疗服务和医疗监管建立标准体系规范。2020年8月国家标准化管理委员会、中央网信办、国家发展改革委、科技部、工业和信息化部五部门印发
6、了国家新一代人工智能标准体系建设指南,加强了人工智能领域标准化顶层设计,推动人工智能产业技术研发和标准制定,促进形成了标准引领人工智能产业全面规范化发展的新格局。2022年3月国家药监局器审中心制定了人工智能医疗器械注册审查指导原则,规范了人工智能医疗器械的技术审评要求,为人工智能医疗器械、质量管理软件的体系核查明确了参考依据。2、人工智能产品多元化发展未来以临床价值为导向的医疗Al产品将实现多元化发展,人工智能技术企业将根据细分应用场景开发出适应更多部位病种的人工智能产品,功能也将从图像检出、分割、量化、辅助诊断进一步发展到疗效评估、治疗决策等领域。产品功能由原来单任务学习趋向多任务学习,实
7、现多维度的功能延展。未来覆盖多部位、多病种、多模态、全流程的诊疗一体化解决方案将成为医疗AI企业提升竞争力的关键所在。3、行业将进一步升级集中随着人工智能在医学影像应用技术的不断优化升级,在临床应用中的复杂模式识别、自动化定量评估方法日渐完善,人工智能有望形成更准确的影像评估依据,为医生提供更专业的辅助诊断意见。技术的成熟与应用场景落地,将会助推医学影像产业智能化转型升级。随着行业数据整合与共享机制的建立、模型训练的成熟、商业模式的确立,以及产品注册证的获批,先发企业将逐步建立技术和商业双重壁垒,推动市场从分散走向集中。4、人工智能助力医疗数据智能化生态建设数据是智能化发展的核心资源,对数据资
8、源的整合治理,是实现智能化应用、充分发挥数据价值的前提。应用人工智能技术的医疗数据智能化生态建设,将有助于加强临床医学和基础医学科研数据资源的整合共享,进而提升医学科研转化及实际的临床应用效能,实现医疗机构在数据资产管理、临床诊疗及科研能力上的综合提升。四、产业发展情况医学影像人工智能属于高端医疗器械领域,具有多学科交叉、知识密集、附加值高等特点,产业链的各环节涉及基础工业、制造业、影像学、医疗机构、互联网等多个行业。随着上游基础设施及影像数据积累到一定规模,影像产业链延伸至人工智能领域,形成了下游端医学影像智能诊断应用。我国人工智能医学影像行业已经形成了完整的产业链,上游市场参与者主要包括基
9、础硬件、医疗设备、云服务、网络运营商等软硬件基础设施供应商。中游为基于计算机视觉、自然语言处理、深度学习等人工智能技术驱动的人工智能医学影像产品的研发企业,主要包括专业的医学影像Al厂商、综合性人工智能技术厂商、以及向智能化转型的医疗器械设备厂商和综合性医疗信息化服务厂商。各类厂商根据自身资源能力,探索从医疗影像辅助诊断,向全病程辅助诊疗、建设医院影像数据平台、推动临床数据科研应用等方向发展。下游为医疗体系中的应用场景端,主要包括医疗机构、体检中心和医药研发机构等,场景应用包括医疗管理、患者服务、辅助诊断、医药科研及健康管理等。五、行业壁垒1、监管准入壁垒我国对医学影像人工智能产品按医疗器械进
10、行审批监管。国家药监部门实行严格的医疗器械生产企业许可和产品注册制度,新进入该行业的企业需要通过药监部门的审核。医疗器械生产企业的审核要求严格,从事NMPA三类、二类医疗器械生产的企业应具有与生产要求相适应的生产设备、场地和环境,其生产、质量和技术负责人需要具备合格的专业能力,在医疗器械注册方面,申请NMPA三类、二类医疗器械注册的企业需要提供产品技术报告、安全风险分析报告、产品性能自测报告、临床试验资料以及医疗器械检测机构出具的产品注册检测报告等资料,在产品试制、注册检验、临床试验、注册申报等环节有更为严格的标准和管理规定。人工智能医疗器械产品相关许可、认证资质的取得需要耗费大量时间及成本,
11、对新进入者形成了一定监管准入壁垒。2、核心技术壁垒医疗影像人工智能行业属于技术密集型行业,综合应用了机器学习算法模型、深度学习、计算机视觉及医学影像相关专业技术,且人工智能技术正处于快速发展阶段,新技术研发和革新速度较快。人工智能公司普遍建立了帮助研发人员提高技术和产品开发效率的研发流程和基础研发工具,在不断研发探索的过程中逐渐积累了相关技术储备,巩固了领先的技术竞争优势,形成了对行业新进入者的技术壁垒。3、专业人才壁垒医疗人工智能是一个多学科交叉、知识密集的前沿领域。行业对科技研发、创新升级、学科交叉依赖度高,需要有大量具有高水平、多学科背景的复合型专业人才支持,需要计算机、临床医学、生物医学工程、数学等多学科的专业技术人才协同研发创新,目前高校和科研机构的人才培养机制短期内无法满足行业蓬勃的需求,导致人才处于稀缺状态,因此拥有行业经验积累的研发人才是人工智能行业的重要壁垒。新进企业短期内很难招聘及培养出具备核心竞争力的人才团队。4、商业化渠道壁垒医疗机构是人工智能医疗器械产品的主要终端客户,因医疗机构在全国地域分布广阔,拓展渠道并搭建服务网络需要较长的周期。医院一旦认可了某家制造商产品的临床优势和产品价值,就会对该产品产生更强的使用粘性。因此,建立了医院渠道的制造商将享有强大的先发优势,并能通过持续服务升级来进一步巩固其优势地位,对后进入的竞争者形成一定商业化渠道壁垒。