《3种主流汽动引风机方案(附汽电双驱引风机高效供热).docx》由会员分享,可在线阅读,更多相关《3种主流汽动引风机方案(附汽电双驱引风机高效供热).docx(10页珍藏版)》请在优知文库上搜索。
1、针对国内主要的3种汽动引风机技术,从设备配置、技术特点及经济性等方面进行了分析比较,并对汽动引风机改造及运行中存在的问题进行了总结。结果表明:背压式汽电双驱动方案的系统配置最为简洁、所需场地较少、系统可靠性最好,且净收益最高,但投资额也较高,3种方案的静态投资回收时间差别较小。三种配置方案1.1 凝汽式汽动图1凝汽式汽动方案示意图该方案一般配置2台5O%容量的静叶可调轴流风机,设2台凝汽式给水泵汽轮机,需要设置供汽管道系统、轴封系统、凝汽器、凝结水系统、抽真空系统、循环冷却水系统、润滑油系统等。由于引风机改为给水泵汽轮机驱动,为满足机组启动需求及降低辅机故障减负荷(RB)工况下机组运行风险,每
2、台机组设置1台备用电动引风机。1.2 背压式汽动按热用户需求不同可将供热分为工业供热和采暖供热。该方案一般配置2台5O%容量的静叶可调轴流风机,设2台背压式给水泵汽轮机。由于给水泵汽轮机排汽直接排至供热系统或主机热力系统,因此不需要设置冷端系统。与凝汽式汽动方案相比,该方案可以减少凝汽器、凝结水系统、抽真空系统及循环冷却水系统。为满足机组启动需求及降低RB工况下机组运行风险,每台机组设置1台备用电动引风机。1.3 背压式汽电双驱动背压式汽电双驱动在石化行业应用较多,在火力发电行业应用较少。该方案配置了2台5O%容量的静叶可调轴流风机,设2台背压式给水泵汽轮机和2台异步电动发电机。该方案与背压式
3、汽动方案相比,不同点主要有:(1)多设置了2台异步电动发电机;(2)减速齿轮箱必须有离合器;(3)不用设置备用电动引风机。厂内6kV母线图3背压式汽电双驱动方案示意图1.4 3种方案对比3种方案的主要设备配置情况见表1(“小表示方案中配置该设备)。由表1可得:凝汽式汽动方案增加的辅助系统最多,需要占用的场地较多,且维护工作量最大;背压式汽电双驱动方案较背压式汽动方案增加了2台异步电动发电机,但是减少了备用电动引风机,其系统配置更为简洁,所需场地较少,且维护工作量最低。表3种方案的主要设备配置比较凝汽式背压式背压式汽动汽动汽电双驱动给水泵汽轮机引风机供汽管道系统给水泵汽轮机本体 润滑油站 控制系
4、统 排汽管道系统 凝汽器凝结水系统抽真空系统循环冷却水系统齿轮箱x/异步电动发电机引风机本体 烟道系统 备用异步电动发电机电动引风机本体引风机烟道系统技术特点当前大多数火电机组在超低排放改造过程中烟气系统的阻力有所增加,原增压风机和引风机合并等造成引风机功率增加较多,造成电动引风机启动电流过大而造成6kV厂用电母线电压降低,对厂用电系统带来冲击,并且电动引风机的厂用电率较高。另外,定速引风机在中低负荷时不但效率较低,而且风机叶轮的磨损较大,而大功率电动机变频改造又存在高成本、高故障率等不利影响。因此,应对大型火电机组汽动引风机改造的可行性进行研究。2.1 工作汽源的选择凝汽式汽动方案的汽源可选
5、择主机四段或再热冷段的抽汽。选择再热冷段抽汽作为汽源时,蒸汽过热度偏低,叶片水冲击较大,若进行叶片抗水蚀处理,则成本增加较多,若不进行水蚀处理,汽轮机寿命将大大缩短。若借鉴给水泵汽轮机汽源,将主机四段抽汽作为汽源,则可利用的焙降大且热效率高,系统运行更为可靠。所以对于凝汽式汽动方案,选择主机四段抽汽作为汽源更为经济。背压式汽动方案的汽源可选择再热冷段、再热热段或者低温再热器出口集箱的抽汽,也可选择主机汽轮机高压缸、中压缸的某级抽汽。从背压式汽动改造案例看,大多数汽源选择低温再热器出口集箱的抽汽,而不选择再热冷段和再热热段的抽汽,这主要是因为再热冷段的蒸汽过热度偏低,经给水泵汽轮机做功后很容易进
6、入湿蒸汽区,叶片受到的水冲击较大,而再热热段的蒸汽温度参数则要求匹配材质更好的供汽管道及阀门。汽电双驱动方案的汽源选择与常规背压式汽动方案一致。2.2 实际改造前的注意事项(1)从锅炉方面分析,若汽动引风机的汽源是锅炉低温再热器出口或蒸汽低温再热蒸汽管道抽汽,锅炉的供汽能力及抽汽后对锅炉受热面安全运行的影响应由锅炉厂核算,且对汽动引风机进行改造后,锅炉换热情况发生变化,应当结合实际对锅炉受热面进行综合调整,达到不降低锅炉效率及运行安全性的目的。(2)从主机汽轮机方面分析,若汽动引风机的汽源是锅炉低温再热器出口或低温再热蒸汽管道,主机汽轮机是否能承受轴向推力的变化应当由汽机厂核算,并且需要对原主
7、机汽轮机通流部分进行核算,确认改造方案是否影响主机汽轮机的夏季出力。(3)从给水泵汽轮机与风机设计匹配方面分析,应当尽可能提高轴系运行的可靠性。一般情况下,齿轮箱由给水泵汽轮机厂家供货,因此给水泵汽轮机厂家需要对风机和齿轮箱的轴系进行扭振计算。(4)从引风机本体方面分析,引风机调速运行后,应当由风机制造厂对叶轮和前导叶进行加固,提高其可靠性。2.3改造后存在的问题汽动引风机改造前虽然会对方案详细地进行论证,但实际运行中仍然会存在个别问题,在对一些电厂进行调研后,主要归纳出如下一些问题供前期可研阶段参考。(1)凝汽式汽动方案中的系统相对独立,但是增加的辅助系统最多,运行中小故障较多、维护工作量大
8、。(2)背压式汽动方案中的给水泵汽轮机的排汽全部回收至除氧器时,经常会出现排挤四段抽汽的现象,从而导致除氧器压力升高,并进一步导致给水泵汽轮机进汽压力偏大、排汽温度过高等问题。(3)当前火电机组逐步参与深度调峰,对于背压式汽动和背压式汽电双驱动方案,改造后的机组不适合进行深度调峰,而采用凝汽式汽动方案的机组在深度调峰过程中的适应性较强。(4)无论采用何种类型的汽动引风机技术,机组在启动过程中,并入第2台汽动引风机操作难度较大,对运行人员的技术水平要求较高。(5)采用背压式汽动方案的机组由于轴封漏汽量大,普遍存在着润滑油质不合格的情况,滤油工作量较大。经济性分析3.1 比较方法我国现有的电网调度
9、模式是电网调度直接控制入网机组的发电功率,但以主变压器出口端的上网电量来结算(见图4)。采用汽动引风机可以显著降低电厂的厂用电率,提高电厂对外售电量,但是基于目前驱动引风机的给水泵汽轮机效率低于主机汽轮机效率的现状,采用汽动引风机方案必然会增加电厂的发电煤耗,厂用电率虽有下降,但是机组整体循环效率还是会低于采用电动引风机方案。因此,汽动引风机改造后的经济效益为增加的对外售电量收益扣除多耗煤的燃料成本和和各项固定成本之后的效益。图4电网的调度模式3.2 经济性比较表2以某6OOMW机组(1台机组)为例,对3种汽动引风机方案的经济性进行对比,案列中给水泵汽轮机排汽均回到主机热力系统,不对外进行供热
10、。表2投资额及回收年限的比较项目凝汽式汽动背压式汽动背压式汽电双驱动投资额/万元390035004500各项固定成本/万元404040上网电价/(元kWTh)0.420.420.42标煤价格/(元820820820年发电时间/h450045004500节省的厂用电率(绝对值)/%1.321.351.50增加的热耗率/(kJkW-h7)94.150110.675110.675多售电收益/(万元a-)149.7153.1168.3多耗煤燃料成本/(万元a-D772908908净收益/(万元”7)684583735静态投资回收时间/a5.76.06.1由表2可得:背压式汽电双驱动方案的投资额最高,对
11、应的净收益也最高,而凝汽式汽动方案的静态投资回收年时间最短,但不同类型应用方案之间的回收年限差别较小。如果机组有工业供热需求,背压式汽动方案和背压式汽电双驱动方案能够更好地满足供热参数的要求,并且能够利用高品质的蒸汽做功,考虑供热收益后其静态投资回收时间可控制在3a以内。因此,采用背压式汽动方案和背压式汽电双驱动方案更为经济,且后者更具优势。若机组无工业供热需求,则采用凝汽式汽动方案更为经济。结语(1)凝汽式汽动方案所增加的辅助系统最多,需要占用较多的场地,且维护工作量最大。背压式汽电双驱动方案较背压式汽动方案增加了2台异步电动发电机,但是减少了备用电动引风机,其系统配置更为简洁,所需场地也较
12、少,且维护工作量最低。(2)汽动引风机改造前需要结合工作汽源对锅炉、主机汽轮机仔细校核;同时对引风机本体、给水泵汽轮机与风机设计的匹配性等方面进行研究。改造前的系统设计中应重点考虑机组的深度调峰及给水泵汽轮机排汽回收问题。(3)汽电双驱动方案是3种方案中投资额最高、净收益最高的方案,尽管其静态投资回收时间不占优势,但与其他方案的差距较小。该方案具有较为简洁的设备配置、较少的占地面积及更高的可靠性,尤其是给水泵汽轮机排汽有相匹配的热用户消纳时,背压式汽电双驱动方案的技术优势更为突出。“汽电双驱”引风机高效供热关键词:供热摘要:目前电力行业广泛采用的常规汽动引风机在调节风机转速时存在节流损失,部分
13、负荷小机效率很低。针对常规汽动引风机在实际运行中小汽机效率偏低的问题,并结合二次再热机组供热的要求,特提出“汽电双驱”引风机排汽供热方案。“汽电双驱”引风机由电动机直接启动至设计转速,通过可离合定速比齿轮箱无扰接入小汽机后,由小机动能直接驱动引风机,不占用厂用电,而且运行时小机调阀始终保持全开,减小了节流损失,维持了较高的效率,同时富余动能还可以带动电机超过同步转速以异步发电机状态运行,发出的电量通过6kV工作母线传输给厂内其他用电负荷,大大降低厂用电率。另外,小机排汽接至辅汽联箱或直接对外供热,具有较强的供热经济性,达到了既节电又节能的效果。关键词:汽电双驱引风机离合器齿轮箱供热目前已投产的
14、几个二次再热机组普遍存在低负荷欠温的情况,调节手段单一,而热电厂又肩负着供热任务,季节性热负荷与昼夜热负荷均存在波动较大的实际情况,调节工况更加复杂;二次再热机组设十级回热系统,抽汽供热、辅助蒸汽、除氧器加热等均无合适汽源,在系统设计上均为高品质蒸汽经减温减压后满足热力系统需要,热经济损失大;电力行业广泛采用的常规汽动引风机在调节风机转速时存在节流损失,部分负荷小机效率很低。本文从供热方案及引风机驱动方式的选择结合起来,并针对二次再热机组的特点,研究一个合理的解决方案。1供热方案的选择供热方案应在保证外部供热的前提下保证机组的安全、稳定运行,并兼顾经济性,包括:直接抽汽供热方案及汽动引风机供热
15、方案两种。1.1 直接抽汽供热方案优点:(1)技术成熟,系统管路相对简单。(2)投资相对较少,主要是减温减压器费用、管道费用和电气仪表费用。缺点:(1)直接将高参数蒸汽减温减压,热损失较大,造成能源的直接浪费。(2)当热负荷从夏季到冬季变化较大时,对锅炉再热器受热而影响较大,不利于机组安全稳定运行。1.2 汽勤引风机供热方案采用汽动引风机,除了降低厂用电、提高对外供电外,汽动风机可采用调速或者定速方式,也可提高机组部分负荷工况时风机的效率。当厂外有热负荷用户时,可将一部分抽汽或排汽引至热网。回热背压式小汽轮机驱动设备技术是基于回热基本原理,将驱动设备的小汽轮机的排汽和抽汽引到热力循环中,排挤部分过热度较高的主汽轮机抽汽,在回收工质的同时达到提高机组热效率的目的。当厂内或厂外有热负荷用户时,可将一部分抽汽或排汽引至辅汽或热网进行热量回收,减少冷源损失,从而能够进一步提高热循环效率。1.3 小结考虑到供热的可行性、可靠性,机组的安全稳定性、经