圆周率的历史.ppt

上传人:王** 文档编号:179238 上传时间:2023-03-23 格式:PPT 页数:12 大小:323KB
下载 相关 举报
圆周率的历史.ppt_第1页
第1页 / 共12页
圆周率的历史.ppt_第2页
第2页 / 共12页
圆周率的历史.ppt_第3页
第3页 / 共12页
圆周率的历史.ppt_第4页
第4页 / 共12页
圆周率的历史.ppt_第5页
第5页 / 共12页
圆周率的历史.ppt_第6页
第6页 / 共12页
圆周率的历史.ppt_第7页
第7页 / 共12页
圆周率的历史.ppt_第8页
第8页 / 共12页
圆周率的历史.ppt_第9页
第9页 / 共12页
圆周率的历史.ppt_第10页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《圆周率的历史.ppt》由会员分享,可在线阅读,更多相关《圆周率的历史.ppt(12页珍藏版)》请在优知文库上搜索。

1、1目录2 圆周率是指平面上圆的周长与直径之比,是一个常数,用希腊字母 (读“Pi”)表示。在一般计算时,人们通常把这个无限不循环小数简化成3.14。 圆周率是一个极其驰名的数,从有文字记载的历史开始,这个数就引进了外行人和学者们的兴趣。对它的研究,在一定程度上反映了这个地区或时代的数学水平,它的历史是饶有趣味的。在中国古代,圆周率还有圆率、周率、周等名称。目录31 圆周率的历史 2 圆周率的计算简史 3 (一)试验时期 4 (二)几何法时期 5 (三)分析法时期 6 (四)计算机时期7 割圆术 8 祖冲之的贡献9 背圆周率的口诀 目录 4目录 人类对圆周率的认识过程,反映了数学和计算技术发展情

2、形的一个侧面。德国数学史家康托说:“历史上一个国家所算得的圆周率的准确程度,可以作为衡量这个国家当时数学发展水平的指标。” 历史上曾采用过圆周率的多种近似值。古代巴比伦、印度、中国等长期使用=3这个数值。公元前2世纪,中国古算书周髀算经记载了“径一而周三”。十九世纪前,求圆周率的值一直是数学中的头号难题,计算进展相当缓慢。十九世纪后,计算圆周率的世界纪录频频创新。进入二十世纪,随着计算机的发明,圆周率的计算突飞猛进。借助于超级计算机,人们已经得到了圆周率的2061亿位精度。 5目录圆周率作为一个非常重要的常数,求出它的尽量准确的近似值是一个极其关键的问题。为求得圆周率的值,人类走过了漫长而曲折

3、的道路。为了计算出圆周率的越来越好的近似值,古今中外一代代的数学家付出了自己的智慧和劳动,贡献了无数的时间与心血。圆周率的计算经历了几千年的历史,它的每一次重大进步,都标志着技术和算法的革新。 以下是人们计算圆周率几个标志性的时期。6 早期的圆周率大都是通过实验而得到的结果,即基于对一个圆的周长和直径的实际测量而对圆周率进行估算。古埃及、古希腊人曾用谷粒摆在圆形上,以谷粒数与方形对比的方法取得数值。东、西汉之交的刘歆通过做实验,得到圆周率的近似值分别为3.1547、3.1992、3.1498、3.2031、比“径一周三”的古率有所进步。以观察或实验为根据所得到的圆周率是相当粗略的,如果主要用于

4、估计田地面积等,对生产没有太大影响,但以此来制造器皿或其它计算就不合适了。目录 7目录 第一个用科学方法寻求圆周率数值的人是阿基米德,他提出了一种能够借助数学过程而不是通过测量的、能够把 的值精确到任意精度的方法,开创了圆周率计算的几何方法(亦称古典割圆术)。阿基米德在他的论文圆的度量中,用圆内接和外切正多边形的周长确定圆周长的上下界,从正六边形开始,逐次加倍计算到正96边形,证明了(3+(10/71)(3+(1/7),得出精确到小数点后两位的值。公元150年左右,希腊天文学家托勒密得出 3.1416,取得了自阿基米德以来的巨大进步。8目录 17世纪出现了数学分析,这锐利的工具使得许多初等数学

5、束手无策的问题迎刃而解。圆周率的计算历史也随之进入了一个新的阶段。这一时期人们开始摆脱求多边形周长的繁难计算,利用无穷级数或无穷连乘积来算的数值。1593年,韦达给出这一不寻常的公式,这是的最早分析表达式。甚至在今天,这个公式的优美也会令我们赞叹不已。它仅仅借助数字2,通过一系列的加、乘、除和开平方就可算出 值。此后,类似的公式不断涌现, 的位数也迅速增长。圆周率的计算像马拉松式的竞赛,纪录一个接着一个地被刷新。1948年1月弗格森和伦奇两人共同发表有808位正确小数的,这是人工计算 的最高记录。9 目录 1946年,世界第一台计算机制造成功,标志着人类历史迈入了电脑时代。计算机的发展一日千里

6、,圆周率的记录也就被频频打破。20世纪50年代,人们借助计算机算得了10万位小数的,70年代算到了150万位,到90年代初,用新的计算方法,算到的 值已到4.8亿位。 虽然计算机的计算速度超出任何人的想象,但毕竟还需要由数学家去编制程序,指导计算机正确运算。当我们把 的计算历史划分出一个电子计算机时期时,这并非意味着计算方法上的改进,而只是计算工具有了一个大飞跃而已。如何改进计算技术,研究出更好的计算公式,使公式收敛得更快、能极快地达到较大的精确度仍是数学家们面对的一个重要课题。圆周率的计算历史讲述的是人类的胜利,而不是机器的胜利。10目录 公元263年前后,我国魏晋时期的数学家刘徽提出著名的

7、割圆术,得出 =3.14。后人为纪念刘徽的贡献,将3.14称为徽率。虽然割圆术提出的时间比阿基米德晚一些,但其方法却有更美妙之处。割圆术仅用内接正多边形就确定出了圆周率的上、下界,比阿基米德用内接同时又用外切正多边形简捷得多。刘徽还采用了一种绝妙的精加工办法,可以将割到192边形的几个粗糙的近似值通过简单的加权平均,就获得了具有4位有效数字的圆周率 =3927/1250=3.1416,而仅通过割圆计算要得出这个结果,需要割到3072边形。这一神奇的精加工技术是割圆术中最为精彩的部分,令人遗憾的是,由于人们对它缺乏理解而被长期埋没了。11 目录 祖冲之对圆周率所做出的贡献巨大,享有世界声誉:巴黎

8、“发现宫”科学博物馆的墙壁上著文介绍了祖冲之求得的圆周率,莫斯科大学礼堂的走廊上镶嵌有祖冲之的大理石塑像,月球上有以祖冲之命名的环形山祖冲之按照刘徽的割圆术之法,设了一个直径为一丈的圆,在圆内切割计算。当他切割到圆的内接192边形时,得到了“徽率”的数值。但他没有满足,继续切割,作了384边形、768边形一直切割到24576边形,依次求出每个内接正多边形的边长。换句话说:如果圆的直径为1,那么圆周小于3.1415927、大大不到千万分之一,它们的提出,大大方便了计算和实际应用。D=1边长0.710.71412.84边长0.380.38813.04边长0.190.19161=3.0412 目录3

9、 . 1 4 1 5 2 6 5 3 5 8 9 7 9 3 2 3 8 4 6 2 6三天一士一壶酒,尔乐苦煞吾,把酒吃,酒杀尔,杀不死,乐尔乐。4 3 3 8 3 2 7 9 5 0 2 8 8 4 1 9 7 1 6 9 3 9 9 3 7死珊珊,霸占二妻。救吾灵儿吧!不只要救妻,一路救三舅,救三妻。5 1 0 5 8 2 0 9 7 4 9 4 4 5 9 2 3 0 7 吾一拎我爸,二拎舅(其实就是撕吾舅耳)三拎妻。8 1 6 4 0 6 2 8 6 2 0 8 9 9 8 6不要溜!司令溜,儿不溜!儿拎爸,久久不溜!2 8 0 3 4 8 2 5 3 4 2 1 1 7 0 6 7 9 8饿不拎,闪死爸,而吾真是饿矣!要吃人肉?吃酒吧!

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中学教育 > 中学课件

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!