《空间几何体的表面积与体积公式大全(新).docx》由会员分享,可在线阅读,更多相关《空间几何体的表面积与体积公式大全(新).docx(19页珍藏版)》请在优知文库上搜索。
1、空间几何体的表面积与体积公式大全一、全(表)面积(含侧面积)1b1、 柱体棱柱、A圆柱-2、 锥体棱锥:S枝傩侧=套底人、圆锥:S冏锥侧=c底/J3、 台体棱台:Sk制=;(。依+赢底)人、圆台:S梭台侧=;(C上底+c下底)/一4、 球体球:S球=42球冠:略球缺:略二、体积1、 柱体棱柱卜Vh=SZz圆柱J2、 锥体棱锥圆锥VSh3、台体棱台IV台=;/I(S上+Jss下+S下)圆台JVBI台=3/z(八十r下+/)4、球体球:V=r球冠:略球缺:略说明:棱锥、棱台计算侧面积时使用侧面的斜高/2计算;而圆锥、圆台的侧面积计算时使用母线/计算。三、拓展提高1、 祖曜原理:(祖Bfi:祖冲之的
2、儿子)夹在两个平行平面间的两个几何体,如果它们在任意高度上的平行截面面积都相等,那么这两个几何体的体积相等。最早推导出球体体积的祖冲之父子便是运用这个原理实现的。2、 阿基米德原理:(圆柱容球)圆柱容球原理:在一个高和底面直径都是2r的圆柱形容器内装一个最大的球体,则该球体的全面积等于圆柱的侧面积,体积等于圆柱体积的3分析:圆柱体积:V=Sh=Ur2)2r=2r圆柱侧面积:S圆柱侧=CzI=(2r)2r=4因此:球体体积:V=23=3球体表面积:Sj求=44厂通过上述分析,我们可以得到一个很重要的关系(如图)即底面直径和高相等的圆柱体积等于与它等底等高的圆锥与同直径的球体积之和3、 台体体积公
3、式公式:Hf=SS.+信5;+S下)证明:如图过台体的上下两底面中心连线的纵切面为梯形ABC4延长两侧棱相交于一点PoP设台体上底面积为St,下底面积为SF/;高为/2o/D/E;c易知:DCsAB,设PE=h,/I则0F=九+2/i由相似三角形的性质得:8=空ALj、B即:溟=5(相似比等于面积比的算术平方根)屈hh整理得:h=/屈:dS下7Sk又因为台体的体积二大锥体体积一小锥体体积V=S1z)-5-z1=z1(St-5PSei代入”悬渤vT-sSh即:V昌底功(5+底SFh=h+SPv台=;/Z(SJAK37+sp4、 球体体积公式推导分析:将半球平行分成相同高度的若干层(层),越大,每
4、一层越近似于圆柱,o时,每一层都可以看作是一个圆柱。这些圆柱的高为工,则:n每个圆柱的体积V,=S,z=ri-222/一1、2/1、r-(r)=r().半球体积为:V半球=ZV”=万X,(,+厂;+元)r-nn02f22H-I2(Wn冗3r_rn-(n- )n(2n - 63r.=TVr U 一2n(1!-)(2-)nn 16= r-(w-1)(2-1),26Zf当九一+00时,onV = U-球体积为:V球】一 3八-1 = r (1-O43尹1x2、23T)=门5、 球体表面积公式推导分析:球体可以切割成若干(个)近似棱锥,当oo时,这些棱锥的高为球体半径,底面积为球面面积的则每一个棱锥的
5、体积HWX-Sj4,则所有的小棱锥体积之和为球体体积。即有:6、正六面体(正方体)与正四面体(1)体积关系如图:正方体切下四个三棱锥后,剩下的部分为正四面体设正方体棱长为,则其体积为:V正方体=G四个角上切下的每一个三棱锥体积为:71C71/12、13V 破锥=Sh=5(5)=Wa中间剩下的正四面体的体积为:V #L=Sh=5(2)2sin60j(2G)2-(x3)=a这样一个正方体可以分成四个三棱锥与中间一个正四面体即:4+=(2)外接球正方体与其体内最大的正四面体有相同的外接球。(理由:过不共面的四点确定一个球。)正方体与其体内最大的正面体有四个公共顶点。所以它们共球。回顾:两点定线三点定
6、面三点定圆四点定球如图:(a)正方体的体对角线二球直径(b)正四面体的外接球半径=3高4(C)正四面体的棱长=正方体棱长X2(d)正方体体积:正四面体体积=3:1(e)正方体外接球半径与正四面体外接球半径相等(3)正方体的内切球与正四面体的关系(a)正方体内切球直径=正方体棱长(b)正方体内切球与正四面体的四条棱相切。(c)与正四面体四条棱相切的球半径=正方体棱长的一半(d)设正四面体棱长为Q,则与其棱都相切的球半径为九后1a2有:7、 利用祖瞄原理推导球体体积。构造一个几何体,使其截面与半球截面处处相等,根据祖晒原理可得两物体体积相等。证明:作如下构造:在底面半径和高都是的圆柱内挖去一个与圆
7、柱等底等高的圆锥。如图:在半球和挖去圆锥后的组合体的相同截面上作研究,设圆柱和半球底面半径均为R,截面高度均为2,倒圆锥的截面半径为尸的,半球截面半径为则:挖去圆锥后的组合体的截面为:S=H?-万耳1半球截面面积为:S=r倒圆锥的底面半径与高相等,由相似三角形易得:=h在半球内,由勾股定理易得:r1=2-2工S、=兀NFMSl=兀K兀K即:S=S2,也就是说:半球与挖去倒圆锥后有圆柱在相同的高度上有相同的截面。由祖眶原理可得:y1=y2所以半球体积:Vw=Sh-hh=5A=?2R=3冗R即,球体体积:V球=2x+rL9网8、 正方体与球(1)正方体的内切球V正方体二正方体的棱长Q=球体的直径Q
8、31743413Q V球=5(-) yaVm方体:V球=6:乃正方体的体对角线内Q=球体的直径d(2)正方体的外接球”434/、33丫球=3r(-)=faV球:Vr正方体(3)规律:正方体的内切球与外接球的球心为同一点;正方体的内切球与外接球的球心在体对角线上;正四面体的内切球与外接球的的半径之比为:1:百正四面体内切球与外接球体积之比为:1:正四面体内切球与外接球表面积之比为:1:3正方体外接球半径、正方体棱长、内切球半径比为:73:2:1正四面体外接球、正四面体、内切球体积比为:306.正四面体外接球、正四面体、内切球表面积比为:3.6.9、 正四面体与球(1)正四面体的内切球A解题关键:
9、利用体积关系思考内切球的球心到各个面的距离相等,球心与各顶点的连线恰好把一个正四面体分成四个三棱锥,每个三棱锥的底面为原正四面体的底面,高为内切球的半径rO利用体积关系得:4(i2sin60o)=-(2sin60o)/所以:r=Lh,其中z为正四面体的高。由相关计算得:h=l2-(-3)=aHz4346V3即:V球=Wm=针()=示*JL乙z_112.zino6-2.V正四面体=QSin60-=(7Vr正四机体:V球=18:JGtt(2)正四面体的外接球外接球的半径=qX高=等QJ4346、V3V球=IM=铲(彳)=Wz_112.moV6_V23V正四面体=3X5Qsm60-a=Tra;Vji
10、:V1filf=-Cl:-ci=3:2y球y正四面体8M(3)规律:正四面体的内切球与外接球的球心为同一点;正四面体的内切球与外接球的球心在高线上;正四面体的内切球与外接球的的半径之和等于高;正四面体的内切球与外接球的半径之比等于1:3正四面体内切球与外接球体积之比为:1:27正四面体内切球与外接球表面积之比为:1:9正四面体外接球半径、正四面体棱长、内切球半径比为:36J2:6正四面体外接球、正四面体、内切球体积比为:27LT8:信正四面体外接球、正四面体、内切球表面积比为:9.6叵:10、圆柱与球(1)圆柱容球(阿基米德圆柱容球模型)(2)球容圆柱圆柱高=底面直径二球的直径球体体积二?圆柱
11、体积3球面面积二圆柱侧面积球体直径、圆柱的高、圆柱底面直径构成直角三角形。设球体半径为尺,圆柱高为2,底面半径为r则有:(2&2=始+(2犷 即:r =MpZ四、方法总结下面举例说明立体几何的学习方法例:已知正四面体的棱长为Q,求它的内切球和外接球的半径思路:先分析球心的位置。因为正四面体是特殊的四面体,显然内切球与外接球的球心是重合的。且是正四面体的高线交点。再分析球心与一些特殊的点、线、面的位置、数量关系。在内切球这种情况下,球心垂直于每一个面,且到每一个面的距离相等;在外接球这种情况下,球心到每个顶点的距离相等。方法1:展平分析:(最重要的方法)如图:取立体图形中的关键平面图形进行分析!
12、连接Do并延长交平面ABC于点G,连接GOl连接DQ并延长交BC于点E,则A、G、E三点共线。A在平面AED中,由相似知识可得:Ea=EG=1市一痴.GQAO且*4GO()1DOAI.釜即:AO=AQ=-2=tz=-45443409=aQ=a=a彳耘V外接球=DO=*兀dV内切球=%XOOi=H)方法2:体积分析:(最灵活的方法)如图:设正四面体ABCD的内切球球心为0,连接AO、BO、CO、DO,则正四面体被分成四个完全一样的三棱锥。设内切球半径为r,正四面体的棱长为则正面四体的高为:C74 、3 4 zV V、 6V外接球=用=笈(aa)312方法3:方程分析:(最常见的做法)如图:显然A
13、O、Do是外接球半径,OO是内切球半径。在RtZDOQ中,由勾股写得可得以下方程:DO2= OO DOZ其中:DoI=IXa+dOi = aOi = Zi =彳。B代入方程解得:DO=手外OQ =潺Vr外接球=HXDO=2aV内切球二=黑a方法4:补形分析(最巧妙的思考)把正四面体补成正方体进行分析。如图:正四面体的外接球半径为:乌邛.内切球半径为:2L逅Q23121743V63V外接球二57xH=Zr7rQ4363V内切球=笈=示7Q方法5:坐标分析(最意外的解法)建立如图所示的空间直角坐标系:则A(0,0,a),B(0,33C(67,af0),D(-a,a,O),设球心位置为O(x,y,z,)2626由IoAI=IoBRoCRODI=R得:OA?=OB=OC