《(王健宇)一元一次不等式复习课教学设计(第七届“挑战杯”青年.docx》由会员分享,可在线阅读,更多相关《(王健宇)一元一次不等式复习课教学设计(第七届“挑战杯”青年.docx(3页珍藏版)》请在优知文库上搜索。
1、一元一次不等式复习课XXXXXXXXXX中学XXX一、复习目标知识与技能:会用不等式的基本性质变形不等式,会解一元一次不等式并用数轴表示一元一次不等式的解集。通过对一元一次不等式的错解诊断加强学生的反思能力。过程与方法:通过一元一次不等式与一元一次方程的类比学习,体会到数学中类比思想与化归思想的作用,使学生能熟练、正确、快速的解一元一次不等式。情感、态度、价值观:通过自主学习,教师引导学生体会不等式与方程的类似与不同之处,把课堂交给学生,让他们成为学习的主人。二、重点难点重点:不等式的定义与性质的理解与运用,一元一次不等式解法及失误避免。难点:熟练、正确的解一元一次不等式,方程的解与不等式解集
2、的联系。三、过程设计(一)情景引入七年级数学基础知识达标赛共7道题,规定答对一道题得10分,答错或不答一道题扣5分,达标标准为40分以上(含40分),你至少要答对几道题呢?我们先看看题吧!七年级数学基础知识达标赛:1、下列各式是不等式的是()A、x=y+lB、2x+3C、2m3n0D、5x+l=3(-2)2、用不等式表示X的2倍与5的差是非负数:。3、若3f-+12是关于X的一元一次不等式,则女=o4、如果那么下列结论中错误的是()A、Q3b3B、3a3bCD、-ah335、如图,表示的不等式的解集是o46i2*b,6、不等式IX+1b(或axVb,ax2b,axb,axb),a、b为已知常数
3、,且a;03、变形依据:若ab,若ab,bc,则c(传递性)若ab,则ac土C(性质1)若ab,cO,WJachc,(性质2)cc若ab,CVO,则ac,(性质3)4、算法总结:变形步骤变形依据具体做法注意事项去分母不等式性质1两边同时乘以最小公倍数要加括号、不漏乘项去括号乘法分配律括号外面的数乘以括号内每个数不漏乘、不掉负号移项不等式性质1两边同时加上或减去一个数或一个代数式要改变符号合并同类项合并同类项法则系数加减字母和指数不变计算准确系数化为1不等式性质2或3两边同时除以未知数的系数除以负数,要改变不等号方向5、解集在数轴上的表示:可以用数轴上的点和它一旁的部分表示,如该不等式的解在数轴
4、上表示为:例如:x0.50.20.14x-1.55x-0.81.5T解:0.50.20.1(4x-1.5)10(5x-0.8)10(1.5-x)10原不等式变形,得,0.5100.2100.110HrI40x-1550x-815-10x即,521化简,得,(8-3)-(25-4)15-10x去括号,移项,整理,得,-7x14两边同除以(-7),得XV-2所以原不等式的解集为:x-2o解集在数轴上表示为:-6-5-4-3史-1012注意:去分母时,要注意分数线的括号作用,分数线去了,要把括号补上,不然就会出现符号错误。反思:此题还有其它的解法吗?例2:不等式12-6;(2(1-2幻的最大正整数解满足21一。=0,求a的值。例3:K是什么值时,关于X的方程2k5X+8=0的解是负数?(四)思维拓展如果关于工的不等式7xva+5和2xv4的解集相同,求。的值。(五)总结反思五、分层作业必做:基础训练P48同步学练选作:基础训练P48能力发展、拓展创新六、板书设计一元一次不等式复习变形步骤变形依据具体做法注意事项去分母去括号移项合并同类项系数化为1思维拓展例题23展示