《工程测量技术毕业设计(论文)-全站仪在隧道围岩收敛非接触监测的应用.doc》由会员分享,可在线阅读,更多相关《工程测量技术毕业设计(论文)-全站仪在隧道围岩收敛非接触监测的应用.doc(17页珍藏版)》请在优知文库上搜索。
1、毕业设计全站仪在隧道围岩收敛非接触监测的应用学生姓名 系(部) 勘 测 工 程 系 专 业 工 程 测 量 技 术 指导教师 摘 要近年来,特长隧道、大跨度隧道日益增多,施工方法多变,这给隧道周边位移量测带来了不同程度的困难,并对位移量测方法和精度提出更高的要求。传统的接触量测主要是以相对位移指标进行控制,其对大跨隧道量测的精度、难度加大,同时其量测数据无法正确反映隧道的偏压变形、整体下沉的状态。为了克服隧道传统接触式量测方法的缺点,文章通过六武高速公路安徽段隧道工程监控量测的实例,详细介绍了全站仪非接触量测的应用方法。关 键 词 隧道工程;非接触量测;全站仪;监控量测;拱顶沉降;自由测站;净
2、空水平收敛I目 录第一章 概论1第二章 测点布设及埋设3第三章 全站仪自由测站非接触监测原理4第一节三角高程法沉降测量原理4第二节 全站仪自由测站原理5第四章 全站仪非接触量测精度试验研究7第一节 观测误差来源7第二节 观测试验及其精度情况9第三节 与常规接触量测的对比分析试验9结语13感谢语14参考文献15毕业设计第一章 概论随着我国轨道交通的迅猛发展,隧道工程施工越来越普遍 。在隧道开挖完成初期,洞体周边围岩不可避免地会产生变形,且其变形量的大小和速率对施工进度、效率和安全有直接影响。工程监测的首要目的是掌握工程变形体的实际形状,为判断其是否安全提供必要的信息,这是因为保证工程建设项目安全
3、是一个十分重要且很现实的一个问题。对于上述专业的测量仪器或工具对围岩的变形进行监测是重中之重隧道监控测量,其主要的监测项目是拱顶下沉和净空变化。为确保隧道施工的安全和确定合理的二衬施工时间,拱顶下沉和净空变化的变形监测工作是各类隧道施工中的必测项目。传统的隧道监控量测方法,周边位移一般采用钢尺式收敛计进行观测,拱顶下沉一般采用水准仪、水平仪、钢尺或测杆进行观测。虽然该方法具有成本低、操作简单和适应恶劣施工环境的优点,但在隧道现场实施过程中存在以下问题:(1) 监控量测工作难度大,由于隧道高度大,拱脚部位的收敛往往无法量测,拱顶挂尺也非常困难;,接触量测几乎不可能,即使勉强能够实施,量测精度也差
4、,而这些段落往往是施工最危险段落。 (2) 量测时间长,施工干扰大,虽然监控量测已作为一道工序被安排在施工组织设计中,但还是希望时间越短越好;(3) 隧道进入中间段后,通风问题、照明问题、洞内不平整及积水问题往往成为制约监控量测工作的重要因素。(4) 对于大断面隧道,如紧急停车带随着人类社会的进步和经济建设的迅速发展,加快了工程建设的进程。我国轨道交通也迅猛发展起来,隧道工程施工越来越普遍 。(5) 一般无法进行三维观测,当要了解隧道周边点的三维变化时,上述传统方法显有不足之处。三角高程法测量隧道拱顶及地表的沉降 ,该方法的精度满足施工监测的要求。应用表明该方法具有快速、效、靠的优点。测得的结
5、果能较好地反映出施工过程中围岩及土体的基本变形趋势以及受施工等因素影响而产生的异常变化 ,可以为现场施工安排及支护结构的稳定性评价提供可靠的依据。科学、准确、及时的分析和预报工程建筑物的变形状况,对工程项目的施工和运营管理都极为重要,这一工作也属于变形监测的范畴。变形监测出了作为判断其安全与否而外,还是验证设计检验施工安全的重要手段,它为工程主体的安全性诊断提供必要的信息,以便及时发现并采取补救措施,最终保障工程项目的安全实施。重庆轨道交通六号线天生站为了解决常规监控量测中存在的问题,笔者在隧道的监控量测中,应用研究了全站仪自由设站的非接触量测技术方法。获得了相应的施压数据和研究结论,并认为这
6、是一种切实可行的隧道围岩收敛变形监测新办法。14第二章 测点布设及埋设根据有关规范和施工要求,按照围岩级别、开挖方法等的不同,先确定隧道监控量测断面的位置及其间距,以及每个监测断面的测点布设形式。如图 1 所示,图中A、B、C、E、F、G 为净空水平收敛测点,D 为拱顶下沉测点。拱顶下沉测点及净空水平收敛测点应布设在同一断面,测点应尽量对称布设,即“同面等高”,以便真实全面地反映断面收敛的变形情况及监测数据的相互验证。在测点布设处,可采用锚杆焊接小钢板,再在其表面粘贴反射膜片,以此作为测点标靶。将测点标靶埋入围岩,使贴有反射膜片一面的小钢板朝向隧道出口,并尽量使其面向隧道中线,以保证测量时全站
7、仪能够精确照准反射膜片和接收到最强的反射信号。 图1 某监测断面的测点布设示意图第三章 全站仪自由测站非接触监测原理由于隧道开挖,破坏了周边围岩的应力分布、整体力学形态及其稳定状态,造成洞体不可避免地发生变形,且变形是多方位、动态和非线性的。通过分析洞体变形的规律,可将其分为由重力引起的拱顶下沉、侧向挤压造成的拱墙收缩和隧底隆起,其形变方向如图 1中箭头所示。这里只介绍拱顶下沉和拱墙收缩的监测新方法,而隧底隆起的监测,则可采用传统水准测量的方法进行。所谓非接触监测是指在不接触被测目标点的情况下,获取被测点的空间位移信息的方法1。下面将分别介绍非接触监测技术中的全站仪三角高程法和全站仪自由测站法
8、在隧道拱顶沉降监测,水平围岩收敛监测中的应用。第一节 三角高程法沉降测量原理采用全站仪三角高程法测量拱顶沉降的原理如图2所示 。图中B点为围岩上的拱顶沉降点 ; A点为设置于隧洞内地面的工作基准点 ;全站仪设置在 I点。全施工过程中根据掘进进度在隧道拱顶测点 B处安装具有固定反射标志的测点装置,反射标志中心距离测点垂直距离为 V2 ;工作基准点 A由安装于隧道底部围岩的水准点构成,工作基点成组布置,每组三个点, 以此互相校核高程,测量期间定期根据隧道外部所设置的水准基准点采用二等水准方法对隧道内部的工作基点高程 HA进行校核。测量时在工作基点 A上放置工作觇标,工作觇标反射点中心距离觇标底部垂
9、直距离为 V1。每次测量时全站仪采取位置相对固定的自由设站法,在有预设标志的位置架设仪器。图 2全站仪三角高程法测量沉降原理示意图测量时由全站仪测出仪器至 A点距离 S 1及垂直角1,至 B点距离 S 2及垂直角2,并以此计算出A点及 B点发射标志的相对高程h 1及h2,并以此计算出测点 B相对于工作基点 A的相对高差h AB,以及 B点高程 H B。 (1) ( 2) 测量实施过程中 B点为固定反射装置,故 V2在每次测量时都为定值。在每次测量时都采用同一工作觇标置于 A点,因此 V 1也为定值。根据式 ( 1) 及式 ( 2), B点的高程相对于初次测量值的变化即拱顶沉降h为 ( 3) (
10、 4)式中 :h、h分别为初次测量时 A点及 B点相对仪器的高差 ; h2、 h1分别为第 i次测量时 A点及 B点相对仪器的高差。HA为工作基点的高程变化,根据定期高程校核的结果得出。由此可以看出, B点高程变化的测量精度与仪器架设高度及觇标高度无关,而只与仪器的测距及测距误差相关。第二节 全站仪自由测站原理全站仪自由测站是指将全站仪置于适当位置,在置镜后的任意站心坐标系下,直接对被测目标点进行观测,获取其空间位置信息的方法。因此,基于全站仪自由测站的隧道围岩收敛非接触监测的原理为:在监控量测中,将全站仪置于隧道中线附近的适当位置,采用极坐标测量的方法,直接对不同断面上的各监测点标志进行观测
11、,获取各监测点在任意站心坐标系下的空间三维坐标,再利用各监测点的空间三维坐标,间接计算得到同一断面上各监测点间的相对位置关系,并通过比较不同监测周期相同监测点间的相对位置关系的差异,来真实反映隧道施工期间的围岩净空收敛变化量(见图 2)。图3全站仪自由测站非接触监测示意如图 1所示,设 B、F 两点的空间三维坐标分别为(BB)、(F F),则净空水平收敛测线 BF 本期量测长度为:(1)同理可得,其他净空水平收敛测线本期量测长度为: (2)设第 i 期净空水平收敛测线长度值为 AGi、BFi、CEi,第 i+1 期净空水平收敛测线长度值为,则相 邻两期净 空水平收 敛 的 变 化 量 分 别
12、为()、()和()。如遇特殊地段,根据相关规范要求,应计算斜测线的变化量,其计算方法与净空水平收敛测线相同第四章 全站仪非接触量测精度试验研究全站仪进行隧道洞周收敛非接触量测精度是测量人员重点关注的问题,为检验全站仪进行非接触量测的精度指标,进行非接触量测的精度模拟实验,实验采用的全站仪是瑞士徕卡 TCA1202,其具有角度测量、距离测量、马达驱动和自动目标识别与照准 (ATR) 等功能。隧道的三维位移和收敛量测的精度试验分析,得出以下结论:第一节 观测误差来源一 全站仪测站因素、在全站仪三角高程拱顶沉降监测中不考虑地球曲率与大气折光对三角高程的影响时,若设全站仪在测量中的测距及测角误差分别为
13、 ms及 m,则全站仪三角高程法测量拱顶沉降的中误差 m h为式中根号内第一项为不考虑球气差影响时测距误差对高差精度的影响,该项会随垂直角而增大 ;根号内第二项为不考虑球气差时测角误差对高差精度的影响,该项会随测距增大。式中取值为206265。在隧道拱顶沉降测量时,边长一般在 20 m50m范围内 ;观测拱顶测点时的垂直角 (前视角)一般在 10 20范围 ;观测工作基点时的垂直角 (后视角)一般在 15范围。取前后视边长 S 1 = S 2 = 50 m (拱顶沉降),在使用测角精度 ms =2,测距精度 m =(2mm + 2 pp m)的全站仪时,根据 (5)式计算得到的中误差值如表 1
14、所示。表 1不同垂直角组合的中误差值表 1数据表明,用上述方法进行拱顶高程测量时,测量中误差会随观测垂直角增大而增大,同时误差也会随着测距增加。在可能的最大垂直角组合下,拱顶观测中误差最大值为0. 72 mm。在岩土工程的变形测量中,一般要求测量中误差小于变形量的 1/ 101/ 20。在隧道开挖过程中,围岩的变形一般在 10 mm100 mm范围内 。因此上述全站仪三角高程测量方法的精度基本满足此类工程变形监测的要求。2、全站仪自由测站非接触监测法,虽不严格要求同一断面上各监测点所构成的图形为轴对称,但要求各监测点布设在同一铅垂面内,且洞壁两侧相对的监测点必须为水平,即“同面等高”;否则其计算模型将不严谨,并引起量测误差。(1) 由于照准误差和量测距离的影响,不同测点的三个坐标轴方向的量测精度不同,但都相差不大,统一表现为 X,Z 方向的误差较小,Y 方向的误差较大。(2) 在后视点与测点的距离 50m 和 100m 的情况下,跨度为 12m,15m 和 20m 的 X 方向的量测精度在0.10.8mm,Z 方向的量测精度在 0.20.9mm,Y 方向的量测精度在 0.71mm 之间,由此可知,全站仪非接触三维位移量测精度 X,Z 方向的精度较高,其量值保持在0.9mm 以内,能够满足隧道位移监控量测的要求,Y 精度较低,其值约 1mm 以内,但对于围岩条件差 (例