《模糊美学与美学的模糊.docx》由会员分享,可在线阅读,更多相关《模糊美学与美学的模糊.docx(25页珍藏版)》请在优知文库上搜索。
1、模糊美学与美学的模糊拙著模糊美学、模糊艺术论出版后,蒙夏之放先生关注,愿撰文评介,并提出商榷。这对贯彻百家争鸣的方针、对活跃美学界的学术空气是有益的。文艺研究于1993年第3期发表他的审美观照本来就有模糊性一一评模糊美学一文。他认为:提出模糊美学是“历史的错位”、“逻辑的错位”;最后强调“美学本来就是模糊的”。这些判断与我的思路,是有分歧的。它牵涉到美学中的一些重大问题。现写在下面,以就教于美学界的朋友们。一、模糊美学的理论基础我在模糊美学中曾说:“现代自然科学和社会科学综合发展中共同出现的关于物质运动的不平衡学说,为模糊美学理论的提出奠定了坚实的基础。具体地说,现代物理、化学中的耗散结构论,
2、为模糊美学提供了科学的依据;模糊数学中的模糊集合论,为模糊美学提供了数学的依据;哲学中的唯物辩证法,为模糊美学提供了科学的哲学理论基础。”对于这段文字,夏之放先生进行了重点评析。他认为:唯物辩证法是上个世纪提出来的,模糊数学是1965年提出来的,耗散结构论是1977年荣获诺贝尔奖金的,为什么以上述理论为依据的模糊美学却偏偏是二十世纪八十年代出现的呢?这难道不是“一系列明显的历史时代的错位”吗?笔者认为,唯物辩证法自诞生那天起,就具有强大的生命力,成为揭示客观事物发展规律的科学真理。它不仅空前地促进了当时科学的发展,而且永远地推动着以后全人类科学的发展。因此,晚于唯物辩证法的任何一个世纪产生的科
3、学,虽不与唯物辩证法的产生同步,但却不可能不或多或少地受到它的影响。就科学产生的具体门类来说,在时空流程上也不都是与唯物辩证法的诞生同步的。如果缺乏形成科学门类的特殊气候与土壤,那么,即使受到唯物辩证法的影响,新的学科也不会马上诞生。只有条件具备,才会瓜熟蒂落。虽然,一百几十年前已经有了唯物辩证法,但由于模糊学的理论还没有今天这样发达,多种科学纵横交叉联系、边缘模糊现象还没有今天这样普遍,因而模糊美学诞生的时机还不够成熟。但在模糊数学、耗散结构论分别于七、八十年代出现后,在一系列模糊理论问题上启发了模糊美学,因而模糊美学便在唯物辩证法的哲学理论基础上脱颖而出,成为一门新兴的科学学科。由此可见,
4、模糊美学正是科学发展的大潮中自然而然地涌现出来的。具体地说,模糊美学引进了耗散结构论,并加以移植制作,从而促进了本学科体系的独立创造。首先,耗散结构论中关于不稳定性的学说,对于模糊美学的建构提供了自然科学的依据。耗散结构论的创始人普里戈金(亦译普利高津)认为:宇宙的发展具有“不稳定性”,“在所有层次上,无论在基本粒子领域中,还是在生物学中,抑或在天体物理学中(它研究膨胀着的宇宙以及黑洞的形成),情形都是如此。”(注1)这就启发了模糊美学。模糊美学所研究的自然美,也不例外地具有这种不稳定性,也就是不确定性。它总是处在不稳定的活跃状态中,呈现出交叉、参差、重叠、错综、回旋、纠缠、显隐、明暗等等复杂
5、现象。潮汐的涨落,海浪的滚动,惊雷的轰鸣,山体的凹凸,难道不是大自然中的不稳定性、不确定性的表现吗?难道不显示出流动的模糊美吗?其次,耗散结构论关于不确定性的原理,也启发了模糊美学对于社会、艺术的模糊美的研究。生活和艺术中的真善美与假恶丑,在斗争中相互影响、彼此消长的复杂现象,就存在着模糊性;其中,既有模糊美,也有模糊丑。莎士比亚笔下的李耳王、奥塞罗,曹雪芹笔下的薛宝钗、王熙凤,就是美丑互渗、亦美亦丑、或美多于丑、或丑多于美的典型人物。这就显示出不确定的模糊性。莎士比亚在马克白斯中,通过三女巫之口所说的“丑即是美,美即是丑”的哲理,就体现出这种美丑交叉的模糊状态。老子在道德经中说:“美之与恶,
6、相去几何?”(二十章)“天下皆知美之为美,斯恶矣;皆知善之为善,斯不善矣。”(二章)这都表明了美丑善恶、相生相克的不确定性。它充实和丰富了哲学中的不确定性原理。但是,由于生产力发展水平的限制,它还处于朴素的辩证法阶段。即使是十八世纪德国辩证法大师黑格尔,虽然对于不确定性原理作出过巨大的贡献,但也没有摆脱绝对理念这一永恒的确定的唯心主义世界观的支配,没有摆脱经典科学永恒性稳定性的理论的束缚,因而在观察事物的运动时,视野还不够宽广,角度还不够新颖,方法还不够灵活,更不可能像普里戈金所说把不确定性原理放在所有科学的一切层面上去分析事物运动的流向、流程、规律、特点。而耗散结构论却为人类指出了一条探索具
7、体科学的方法论的途径。它所创立的“非平衡宇宙”(注2)理论,拓展了模糊美学研究的新视野,把模糊美学对于不确定性原理的开掘,置于无限广阔的飞跃发展的自然科学背景中。再次,耗散结构论的非线性系统的不确定性学说,促进了模糊美学的开放性系统的形成,沟通了诸学科之间的联系,在纷纭复杂的科学交叉线上引发了模糊美学,使其逐步形成了互渗性的特点。它在多种学科汇合点上安营扎寨;它吸引其它学科关于不确定的学说来丰富自己、转化为自己的营养,变成自己特殊的机制。此外,模糊美学又以本学科的理论,补充、丰富了其它科学的美的内容,为其它学科增添了美的魅力。它那关于模糊性、模糊美的学说,为耗散结构论关于非线性系统的不平衡、不
8、稳定的学说,提供了佐证,并在美学领域反衬出耗散结构论的真理性。模糊美学中的有无相生、虚实结合、悲喜交融、美(优美)高(崇高)互渗、知白守黑、明暗掩映、不似之似等等,不正是说明了模糊美的过渡性与互渗性吗?不正是对耗散结构论中不确定性理论的有力反衬吗?普里戈金不仅运用不平衡、不确定性理论论述了自然科学问题,而且还列举了庄子的“运转”论、歌德的浮士德及其它艺术品来阐明不确定性原理,这就在哲学社会科学上启发了模糊美学研究。他说:“在一些最美的雕像中,寻求静止与运动之间、捕捉到的时间与流逝的时间之间的接合。”(注3)这里指出了雕塑艺术中的动与静之间的不平衡状态,显示了耗散结构论对艺术创造的影响。这些直接
9、取之于哲学、艺术的例证,对于模糊美学研究,更富于感知性、亲和性与理论的感染力。当然,普里戈金所论述的着重是整个宇宙非线性运动中的不平衡学说,其援引的例证都是为这个总原理服务的。以上所述,可以证明,耗散结构论引发了模糊美学,模糊美学实证了耗散结构论。其中的理论中介便是非线性运动中的不平衡、不确定性学说。模糊美学与耗散结构论正是在此坚实的理论基础上接轨的,根本不存在“历史的错位”问题。至于模糊数学能否作为模糊美学的数学理论依据?回答是:能!夏之放先生认为不能。其理由之一是,自然科学追求定量分析,数学也不例外;哲学社会科学中若干门类是不追求定量分析的,美学便是如此。所以,由于模糊数学的出现而想建立一
10、门模糊美学是困难的。笔者认为:自然科学有的追求定量分析,如经典数学;有的则热衷于模糊分析,如模糊数学。可见,追求模糊分析的模糊数学与追求定量分析的数学是有区别的,我们焉能把模糊数学纳入定量分析的轨道呢?既然如此,模糊数学便可在“模糊&rdquo理论的基础上与模糊美学接轨,因而模糊数学引发模糊美学,也是必然的。夏先生的另一理由是:只有现实实践活动才是数学赖以建立的基础和依据。如果从数学中寻找建立模糊美学的依据,就可能把数学抽象推到极端而变成荒谬。他为了强化自己的逻辑,还引用了恩格斯论述纯数学的一段话。恩格斯说:纯数学的“一切抽象在推到极端时都变成荒谬或走向自己的反面。”(注4)所以对于“数学的无
11、限”,“只能从现实来说明J(注5)笔者认为,对于纯数学,恩格斯并不是否定的,例如他在反杜林论中,就批评过杜林完全抹煞纯数学的现实的世界内容的唯心主义(注6);他否定的只是把抽象推到极端时的荒谬的东西。这就表明,恩格斯的分析,是科学的、有针对性的。但是,这同模糊美学从模糊数学中吸取营养却是两码事。模糊美学运用模糊数学的原理(模糊集合论)来支撑自己的理论框架,同“可能把数学抽象推到极端而变成荒谬”,在逻辑上是毫无联系的。恩格斯在论述“关于现实世界中数学的无限的原型”时说:“我们的主观的思维和客观的世界服从于同样的规律,因而两者在自己的结果中不能互相矛盾,而必须彼此一致,这个事实绝对地统治着我们的整
12、个理论思维。它是我们的理论思维的不自觉的和无条件的前提。”(注7)恩格斯还批评了十八世纪形而上学的唯物主义:“它只限于证明一切思维和知识的内容都应当起源于感性的经验,而且又提出了下面这个命题:凡是感觉中未曾有过的东西,即不存在于理智中。“(注8)至于黑格尔的唯心主义的辩证哲学,虽然颠倒了思维和存在的关系,但“却不能否认:这个哲学在许多情况下和在极不相同的领域中,证明了思维过程同自然过程和历史过程是类似的,反之亦然,而且同样的规律对所有这些过程都是适用的。”(注9)在这里,恩格斯从辩证法的高度,深刻地论证了思维与存在的一致性。科学理论思维虽来源于现实世界,但它又具有巨大的主观能动性,它是指导实践
13、、改造客观世界的强大武器。这就表明,理论思维和现实存在具有辩证的血肉联系,当我们在探索科学学科的生成原因时,决不能把理论与现实割裂开来,只承认特定科学学科产生的现实基础,不承认特定科学学科产生的理论依据;或者只承认特定科学学科产生的理论依据,而不承认特定科学学科产生的现实基础。我们也不能认为:强调了理论依据,就是抹煞了现实基础;或者强调了现实基础,就是取消了理论依据。相反,有的在强调理论依据时,正是以现实基础为根本的;有的在强调现实基础时,正是以科学的理论依据为指导的。当我们强调模糊数学可以作为引发模糊美学的数学理论依据时,并不意味着否定科学来源于现实世界这一命题。恩格斯在反杜林论中说:“正如
14、同在其他一切思维领域中一样,从现实世界抽象出来的规律,在一定的发展阶段上就和现实世界脱离,并且作为某种独立的东西,纯数学也正是这样,它在以后被应用于世界,虽然它是从这个世界得出来的”(注10)。模糊数学的基本规律虽然来源于现实世界,但又可作为许多学科的数学理论参照系而被广泛运用。由此可见,模糊数学的基本规律也是可以作为引发模糊美学的数学理论依据的。列宁在马克思主义的三个来源和三个组成部分一文中告诉我们:“马克思的学说是人类在十九世纪所创造的优秀成果一一德国的哲学、英国的政治经济学和法国的社会主义的当然继承者J(注11)这是就马克思主义的思想来源和理论根据而言的。列宁的这一论断为我们探讨学科产生
15、的理论依据提供了科学的方法论。这就是说,列宁在这里是从十九世纪德、英、法意识形态中研究马克思主义的思想来源和理论依据的;因而我们从特定科学学科中去寻找理论依据也是可以的。我们当然也可以把列宁的做法加以推广、运用、去从模糊数学中探讨引发模糊美学的数学理论依据。夏之放先生说:“如果我们要为哲学社会科学中辩证发展的分支科学寻找相应的数学分支的话,那么首先应该找到研究变数数学的微积分头上。”模糊数学只是变数数学的一个分支,因而不能作为引发模糊美学的数学理论依据。他说:“在我看来,从思维方法的对应来看,所谓模糊美学应该与整个变数数学相匹配。”在这里,他一方面设令模糊美学应从整个变数数学中寻找相应的理论依
16、据,一方面又认为应从变数数学的重要部分一一微积分的头上寻找相应的依据。他一方面假设:作为变数数学的分支的微积分,只能与哲学社会科学辩证发展的分支科学相匹配;另一方面又假设:作为变数数学分支的模糊数学不可以作为引发模糊美学的数学理论依据。总之,夏之放先生突出表述的是整个变数数学,而所举的例证则是变数数学的分支(微积分);当你用变数数学的分支(模糊数学)来论述问题时,他又说要与整个变数数学相匹配。这种逻辑,不是前后?悟吗?诚然,作为变数数学的微积分,的确体现了活用的辩证法,因而给哲学社会科学中的辩证法以巨大的启迪。但是,任何哲学社会科学门类的诞生,除了深受前人辩证法的影响外,还有其特殊的现实背景和具体原因。微积分虽然含有辩证法,但并没有提出、也不可能提出模糊集合论和其他一系列模糊数学范畴,因而便不存在引发模糊美学的契机和参照系。撇开模糊数学,去寻找模糊美学诞生的数学理论依据,至多也只能找到某种远因,而不能找到近因,更无法把握引发模糊美学的关节点。如