77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx

上传人:王** 文档编号:1007881 上传时间:2024-03-15 格式:DOCX 页数:14 大小:315.35KB
下载 相关 举报
77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx_第1页
第1页 / 共14页
77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx_第2页
第2页 / 共14页
77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx_第3页
第3页 / 共14页
77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx_第4页
第4页 / 共14页
77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx_第5页
第5页 / 共14页
77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx_第6页
第6页 / 共14页
77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx_第7页
第7页 / 共14页
77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx_第8页
第8页 / 共14页
77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx_第9页
第9页 / 共14页
77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx_第10页
第10页 / 共14页
亲,该文档总共14页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx》由会员分享,可在线阅读,更多相关《77G毫米波雷达ADAS应用及方案分析(自动驾驶).docx(14页珍藏版)》请在优知文库上搜索。

1、近年来ADAS功能逐步趋向于自动驾驶场景。面对复杂的交通环境、天气及昼夜的变化,亳米波雷达表现卓越的性能更加抢眼、使之成为当前自动驾驶技术方案的标配。本文基于毫米雷达技术特点和应用场景,对比目前主流芯片厂商的集成方式,以及雷达模组厂商的主要产品,给出亳米波雷达选择准则和配置规律。本文主要包括部分内容,第一节介绍毫米波雷达的工作原理和前端电路结构。第二节介绍7681GHZ亳米波雷达在ADAS功能和AD自动驾驶中的角色和功能,重点介绍相较激光雷达和摄像头两种技术方案毫米波雷达的技术特点和优势。第三节重点介绍和对比主要雷达前端半导体厂商的77GHz雷达方案和特点,为汽车雷达研发人员提供方案选型依据。

2、1 .亳米波雷达3个主要的测量能力和特点作为ADAS或AD自动驾驶汽车空间感知系统的重要组件,毫米波雷达可为主机车辆提供多种高精度的路面空间信息,如目标车辆的距离、方位角和相对速度等。这些信息对车辆主动控速、避让其他车辆,甚至执行紧急安全措施都具有非常重大的意义。图1为例,展示了车载雷达的3个主要的测量能力,即与目标车辆(物体)的距离、方位角和相对径向速度。而对于高分辨率雷达还具有一定物体特征的检测能力,从而判断目标的性质,比如轿车、卡车、行人、路灯杆、冰面路等。从原理上说,传统的脉冲雷达是通过测量发射波和反射波之间的传输延时求得与目标物体的距离参数;通过水平旋转雷达天线的发射面实现机械扫描来

3、获取目标的方位角度;对于被测目标的速度,则必须采用发射连续波,经过测量反射波的多普勒频移并计算获得。可以看出,单一测量目的的雷达原理并不复杂,但是如何将它们集成到一具雷达组件上,并且具有的小型化、轻量化、低功耗和耐震动的特点就是一个不小的挑战了。这也成为各大厂商摒弃机械雷达,不约而同的选择固态亳米波雷达的主要原因。首先,毫米波波长短,收发天线尺寸小,组件装置就可以做的很小;其次,伴随着射频技术的发展,亳米波半导体技术已经比较成熟,雷达前端电子器件集成度很高,雷达模组重量轻,抗震性能理想。而且随着雷达芯片的大规模量产,组件成本低,可以在车身上安装多组、级联和拼接后实现360。环视,这样就无需复杂

4、而精密的机械扫描构造;而且从信号处理的角度,毫米波雷达采用的特殊调制方式,可以在极短时间内完成距离和角度的双重测量,效率非常高。而且通过反射波的微多普勒特征,通过算法可以判断目标物体属性,实现目标识别。2 .车载雷达收发器结构传统的脉冲雷达是通过测量收发信号的脉冲时间差来算出与目标距离。但是三角FMCW或Chirp雷达却是要测量发射信号和接收信号之间的频率差,这就需要在雷达收发器中加入一个混频器,将收发信号进行混频得到频率差(也可称为IF中频信号)。毫米波雷达组件是如何实现它的功能的呢?下边需要介绍一下雷达的电路结构。(Xl1Yl)射领前端RF FE数字前端 数字处理I: FN收发SS如图5展

5、示了基本的毫米波雷达原理框图。三角波发生器通过控制锁相环PLL内的VOC压控振荡器产生一个周期性的调频信号。经过n倍频器将其变换到76GHz81GHz的发射频率。经过PA放大,由TX天线将雷达波束发射出去照射目标物体。雷达波经物体反射回到Rx天线。微弱的反射信号再经过LNA低噪声放大器再与Tx信号进行混频,从而得到IF差频信号fB。以上在整个亳米波雷达系统中被称为“射频前端”(RFFE)o而后模拟的IF信号通过“数字前端”的ADC电路进行采样和量化转换数字基带信号。接下来的数字型号通过总线接口传输给执行FFT运算的数字信号处理器DSP,最终计算获得目标物体的距离、方位和速度等信息。从电路结构来

6、看,在数字处理之前是被称为“雷达收发器”的部分,也是各车载雷达芯片公司主要的战场。而之所以将车载亳米波雷达系统划分成射频前端、数字前端和数字处理这三部分。主要是因为各雷达半导体厂商通过对这三部分电路的集成和分割体现各自在半导体工艺、雷达性能和集成度方面的差异化和优势化。3 .最新车载毫米波雷达的分类和应用ADAS/AD对车载雷达的需求从市场角度,全球汽车工业朝着电动化、智能化、网联化的方向发展,市场对具有ADAS功能的汽车需求增加,也带来了车载雷达需求总量的激增。这期间各大IC厂商纷纷进入,与汽车部件供应商和车厂一起建立了一套完整的车载雷达技术与供给产业链。同时单车雷达的数量、性能和安装位置也

7、已经与具体的ADAS任务之间产生了特定关系。表1ADAS-AD车身探测雷达/传感器数最ADAS/AD传感器Level1/2Level3Level4/5Radar13466-10Camera12468从雷达装备数量来看,表1展示了NXP恩智浦半导体公司预估自动驾驶Level1-Level5各级车载雷达及其他传感器数量需求。ADAS至自动驾驶Levell-Level5级的进阶是汽车驾驶朝着自动化和智能化升级的过程,它同时伴随着车身雷达Radar和摄像头Camera数量的增加。可以看出毫米波雷达和摄像头的数量远大于同程度的激光雷达LiDARo这不只是原理和用途上的差异,更是成本的考量。可以说未来车载

8、毫米波雷达使用的普遍性、总装数量和市场都会非常的庞大。车载雷达及传感器种类亳米波雷达是通过电磁波束对目标进行探测的,因为发射功率与探测距离,天线排布与探测角度之间制约关系,很难让一具雷达同时具备大角度和远距离的性能。所以亳米波雷达根据不同的探测需要被分为远距LRR、中距MRR和近距SRR3个类型,如表2所示。表2各种车载探测传感器的作用距离5印视场角度M雷达分类缩写探测范围/m水平角俯仰角毫米波雷达Long-RangeRadarsLRR10-250155Medim-RangeRadarsMRR1100455Short-RangeRadarsSRR().15308010激光雷达LiDARLiDA

9、K15018015摄像头CameraCAM25030o120o30。120作为ACC自适应巡航功能的前视雷达采用LRR,它要看的足够远以保证车辆在高速行驶过程中有足够的减速时间和制动距离,但LRR的波束集中限制了它的视场角。而MRR中距雷达主要支持如LCA变道辅助等功能。它可以提前检测目标车道的路面情况,确定其他车辆的位置和速度,车载计算机通过计算就可以制定变道时机、切入角度和速度等行驶动作策略。SSR则和当前很多车辆的超声波雷达的功能有一定重合,主要支持车身环视、自动泊车和障碍物检测功能。同时较UItraSOniC超声波雷达,SRR其探测范围更大,可以精确定位车身周围行人或障碍物的位置。除了

10、上述提到的从功能上划分,当前车载毫米波雷达还可以从波段和带宽上划分(表3)。表3毫米波雷达频点和带宽分类刈雷达分类中心频率/GHz带宽/MHz国家/区域24G24.0524.25200中国24G24.2526.65250/500欧洲/北美77G76-771000中国/欧洲/北美备注:由于欧洲24G频段占用卫星/航天服务共享频段,车载24G雷达频段将于2022年取消车载亳米波雷达中心频率从24G提高到77G除了考虑各国频段资源分配的法规,更重要的是77G可以承载的更高的工作带宽,从而提供更高分辨率和目标检测能力。比如,77G雷达在IG的带宽时,在前方250m的范围内分辨行人和车辆,这对车辆驾驶决

11、策具有非常重要的意义。4 .最新车载亳米波雷达在ADAS上对应的具体功能当前带有高级辅助驾驶功能的汽车,会根据其支持的项目来部署车载雷达和其他传感器(表4)。表4各种车载车身传感器对应ADAS功能传感第ACCEBA/AEBPED/ODFCW/RCWTSRLDWPCWLCARCTASVMAPZPABSDLRROOMRROOOOOSRROOOOOOOO表4总结了当前已经实现的L3级ADAS的主要功能。其中9项需采用毫米波雷达的支持。可以说毫米波雷达是未来高级辅助驾驶和自动驾驶系统的“标配”。毫米波雷达在全天候条件下,测量效率和系统成本优势远高于激光雷达和摄像头。但其在交通标志、标线和物体识别方面的

12、缺陷,则要由摄像头传感器来支撑。如图6所示,当前车载毫米波雷达Radar都是固态的,安装在车身的固定位置,并探测车外相应区域,如前视MRR中距雷达、后视MRR中距雷达和近距SRR环视雷达。摄像头也同样采用固定职位安装,并监视相应的区域。而当前比较成熟激光雷达基本采用机械扫描方式,一般安装在车顶以此实现360。扫描。5 .77G毫米波雷达方案-典型ADAS/AD驾驶雷达方案为了更好的了解最新亳米波雷达的硬件方案,我们先关注一下前沿的ADAS/自动驾驶感知系统的硬件拓扑结构。如图7展示,首先明确的将固态激光雷达、毫米波雷达和摄像头传感器分成独立的3个域,每个域一个单独的域控制器(SensorDom

13、ainProcessor)o而一个域控制器下挂多个同类的传感器或雷达。比如,毫米波雷达域就有2组共6具雷达收发器。要说明的是最新的车载毫米波雷达支持级联技术,它通过将多个收发器串联在一起,增加某一方向上收发天线数量,通过域控制器的同步使这个方向的雷达具有更大的视场角度和探测能力。如图7中,6个SRR/MRR中短毫米波雷达就是3个一组的级联方式,2组分别负责不同的探测方向。同时LRR远距毫米波雷达被独立出来,因为前看雷达采用宽带高分辨率窄波束模式,专门负责ACC和AEB等高安全级别功能。其数据接口要满足大带宽和低延时要求,因此直接链接融合控制器,而不经由域控制器的分支。当然,这种以控制融合单元(

14、ControlFusionUnite)为中心的拓扑结构,可以拓展多个域控制器,结构非常灵活。不同类型的雷达或传感器获取的空间数据在这个单元中进行融合计算,最终建立起一个三维空间地图,实现如安全预警、变道、环视和自动泊车等ADAS功能。6 .77/79G雷达系统方案如1.4节所展示的,一个完整车载毫米波雷达收发器模块,包括射频前端(含天线)、数字前端、数字处理DSP以及电源这4个部分。毫米波雷达作为整车前装部件,且单车装备数量多,所以整车厂对其成本非常敏感。早期的毫米波雷达方案,由于受到射频半导体工艺的限制,其电路主要由分离器件搭建,性能和质量并不稳定,成本也下不来。但随着MMIC微波芯片技术和

15、制造工艺的提高,不同的半导体公司都提出各自特点的集成方案。表5欧美主要雷达芯片厂最新方案芯片型号频段/GllzICI之带宽/GHz发射功率/dBm接收灵敏度/DbInfineonRXS8160PLTC3xx77/79SiGeBiCMOS216.5未公开NXPTEF810ERaceRunner76-81RFCMOS2/4127678GHz117881GHz127677GHz137781GHz如欧洲的英飞凌(Infineon)其车载雷达方案发展的较早,他们最早采用离散器件电路,后逐步集成形成今天基于BiCMOS工艺收发器+数字DSP的套片方案。欧洲的另外一个厂商恩智浦(NXP)2017年开始从BiCMOS转向集成度更高的RFCM

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 汽车/机械/制造 > 汽车技术

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!