《X射线探测焊缝及机械损伤方法概述----中英文翻译.docx》由会员分享,可在线阅读,更多相关《X射线探测焊缝及机械损伤方法概述----中英文翻译.docx(12页珍藏版)》请在优知文库上搜索。
1、Originaltext:X-RAYDETECTSWELDSANDMECHANICALSTRUCTUREDAMAGEMATHODS,SUMMARIZEThemovingsmallobjectdetectioninimageisalwaysadifficultprobleminfieldofimageprocessing,whichappliesinmanyfields,suchasindustrialdetectionandmedicaldetection.Thedefects,suchasblowholesandincompletepenetration,occasionallyappear
2、intheweldingprocess.Thesedefectscanaffectthequalityandthesecurityofproducts.Therefore,defectsdetectioninweldingseamisextremelyimportant.Now,theon-linedetectionofdefectsintheweldisstilldonebyhumaninterpreter.However,thisprocessissubjective,inconsistent,laborintensiveandfatigueofinterpreter.Itisdesira
3、bletofindaneffectiveautomaticdefectsdetectionmethodtoassisthumaninterpreterinevaluatingthequalityofweldandtomaketheon-linedetectionobjective,standardandintelligent.Ourresearchisbasedonthis.Wehavestudiedtheautomaticdefectsdetectionintheweldseamandmainlydonethefollowingresearch:(1)Thereismuchredundant
4、backgroundinformationforthedefectsdetectionintheimage.Thereforeweuseanautomaticallyabstractingmethodofweldareabasedontheauto-adaptedthresholdsegmentation.Thismethodcanreducethecomputationandincreasetheprecision.(2)TheSUSANalgorithmhasgoodanti-noiseability,whichcanrecognizetheimageedgeverywell.Soweha
5、vestudiedadefectsdetectionmethodbasedonSUSANalgorithm,whichassociatedwiththemorphologyoperation.Theresultsindicatethatthismethodiseffective.(3)Waveletanalysismethodhasaverygoodlocalizationcharacteristic,whichcanfocusonthearbitrarydetailoftheanalyzedobject.Therefore,Westudiedamethodusingwaveletdecomp
6、ositiontogettheshapeandpositioninformationofthedefects.Thenweusethewienerfilterandmorphologymethodtocompletethedetection.Theautomaticflawdetectionofweldedtubesisoneofthemostimportantstepstoensurethequalityofthetubes.Nondestructiveinspectiononweldingseamoftubeisrequiredinthetubeproduction,andrealtime
7、X-Rayradiographyinspectionisaneffectivemeans.Alongwithcontinuousimprovementoftheproductiveratio,thedemandfortheautomaticinspectiontotheweldingseambecomesmoreandmorepressing,soimplementationoftheautomaticinspectionpossessesimportantsignificanceonboththeoryandreality.Wavelettransformisapowerfultoolint
8、hesignalandimageprocessing,anditsfundamentaltheoryhasbeenformed.Fromtheviewofengineeringapplications,however,thewavelettransformisstillintheelementarystage,thefurtherResearchesarerequiredforthepracticaluses.Inthisthesis,Weconcentratemainlyonusingwaveletanalysisforweldingseamimageprocessingandrecogni
9、tion,andsomerelatedtechniquesaredeveloped.Forconstructingweldingseampositioninganddetectioncontrolsystem,themultiplecomputersconfigurationforweldseamimagerecognitionisproposed.ThesystemadoptsthearchitectureinwhichmultipleCPUsprocessparallelsunderthecontrolofthemasterIPCcomputer.Thesystemcanperformst
10、oringtheweldseamimages,positioning,flawsrecognizingandqualityprejudging.TheWatch-Doginterfacecardissuccessfullydeveloped;itcanimprovethesystemreliabilitybyredundanciestechniqueofsavingbreakpointdataandrestoringthem.ThehardwaresupportingthesystemmakesuseofthehighspeeddigitalsignalprocessorTMS320C30fr
11、omTaxaxInstrumentsCompany.Theframegrabbercancapture25framesofweldingseamimagepersecondcontinuouslyandmakeitpossibletofulfilltherealtimeweldingseamimageprocessingAndrecognition.TheonekindofimprovedFWT(FastWaveletTransform)algorithmforafinitesequenceisproposedafterstudyingtheoryofmustiersolutionanalys
12、isandanalyzingtechnicalcharacteristicsofDSP.TheimplementationoftheperiodicextensionoftheFWTonDSPisdescribedindetailandthecorrespondingFWTassemblycodeisdescribedfortheDSPTMS320C3Xseries.Thisdissertationsuggestsschemeofimagedemonizingbasedontwo-dimensionaldiscretewavelettransform.Thedemonizingalgorith
13、misdescribedwithsomeoperators.Bythresholdthewavelettransformcoefficients,ofnoisyimages,theoriginalimagecanbereconstructedcorrectly.Differentthresholdselectionsandthresholdmethodsarediscussed.Thenewrobustlocalthresholdschemeisproposed.Quantifyingtheperformanceofimagedemonizingschemesbyusingthemeansqu
14、areerror,theperformanceoftherobustlocalthresholdschemeisdemonstratedandiscomparedwiththeuniversalthresholdscheme.Theexperimentshowsthatimagedemonizingusingtherobustlocalthresholdperformsbetterthanthatusingtheuniversalthreshold.Inordertoimprovetheaccuracyandtherealtimeperformanceofedgedetection,ameth
15、odneedtobefoundtomatchthedetectionoflowcontrastblurredweldingseamimage.Thisdissertationanalyzedthemainsourcesofnoiseaswellasthedifferentcharacteristicsofnoiseandsignalunderwavelettransform,andproposedaMoultriesolutionedgedetectionmethodbasedonwavelettransform.Theexperimentalresultsshowtheeffectofthi
16、salgorithmisadvantageousoverthatoftraditionaledgedetectionalgorithm.Thegeometricalrelationofellipticimagingisstudiedforweldingseamimageofthebuttweldsinstraighttubes.Theregionmodelofweldingseamimageisproposed,Itfurnishesaevidencetheorytofurtherprocesstoweldingseamimage.Combiningwiththeregionmodel,amodel-basedadaptivetargetsegmentationalgorithmisproposed.OnebasisofthealgorithmisOtsu,sdiscriminatescriterion.Theadaptivetargetsegmentationofweldingseamimageisrealized.Theeffecto