《CA6150普通车床的数控技术改造.docx》由会员分享,可在线阅读,更多相关《CA6150普通车床的数控技术改造.docx(43页珍藏版)》请在优知文库上搜索。
1、题目CA6150普通车床的数控技术改造目泰第一章绪论-2-数控技术和装备发展趋势2-第二章数控机床系统总体设计-7-一 总体方案设计内容-7-二 总体方案确定-8-第三章进给系统设计计算-IO-一选择脉冲当量-IO-二计算切削力-IO-三 滚珠丝杠螺母副的计算和选型11-四 齿轮进给齿轮箱传动比计算-19-五 步进电机的计算和选型-20-第四章微机数控系统的设计-25-一 微机数控系统的设计纲要-25-一硬件电路设计-25-二软件电路设计-26-二 8031单片机及其扩展-26-一8031单片机的简介-26-二8031单片机的系统扩展-27-存储器扩展-29-四I/O口的扩展-30-三 步进电
2、机驱动电路-31-一脉冲分配器(环行分配器)-31-二光电隔离电路-32-功率放大器-32-四其他辅助电路-33-四 数控系统的软件设计-34-*软件脉冲分配器-34-二逐点比较法插补程序-36-步进电机升降速软件设计-37-第五章数控机床零件加工程序-39-第六章总结与展望-40-第一章绪论数控技术和装备发展趋势当今世界数控技术及装备发展的趋势及我国数控装备技术发展和产业化的现状,在此基础上讨论了在我国加入WTo和对外开放进一步深化的新环境下,发展我国数控技术及装备、提高我国制造业信息化水平和国际竞争能力的重要性,并从战略和策略两个层面提出了发展我国数控技术及装备的几点看法。装备工业的技术水
3、平和现代化程度决定着整个国民经济的水平和现代化程度,数控技术及装备是发展新兴高新技术产业和尖端工业(如信息技术及其产业、生物技术及其产业、航空、航天等国防工业产业)的使能技术和最基本的装备。马克思曾经说过各种经济时代的区别,不在于生产什么,而在于怎样生产,用什么劳动资料生产。制造技术和装备就是人类生产活动的最基本的生产资料,而数控技术又是当今先进制造技术和装备最核心的技术。当今世界各国制造业广泛采用数控技术,以提高制造能力和水平,提高对动态多变市场的适应能力和竞争能力。此外世界上各工业发达国家还将数控技术及数控装备列为国家的战略物资,不仅采取重大措施来发展自己的数控技术及其产业,而且在高精尖数
4、控关键技术和装备方面对我国实行封锁和限制政策。总之,大力发展以数控技术为核心的先进制造技术己成为世界各发达国家加速经济发展、提高综合国力和国家地位的重要途径。数控技术是用数字信息对机械运动和工作过程进行控制的技术,数控装备是以数控技术为代表的新技术对传统制造产业和新兴制造业的渗透形成的机电一体化产品,即所谓的数字化装备,其技术范围覆盖很多领域:(1)机械制造技术;(2)信息处理、加工、传输技术;(3)自动控制技术;(4)伺服驱动技术;(5)传感器技术;(6)软件技术等。1数控技术的发展趋势数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应
5、用领域的扩大,他对国计民生的一些重要行业(IT、汽车、轻工、意料等)的发展起着越来越重要的作用,因为这些行业所需装备的数字化已是现代发展的大趋势。从目前世界上数控技术及其装备发展的趋势来看,其主要研究热点有以下几个方面14。1. 1高速、高精加工技术及装备的新趋势效率、质量是先进制造技术的主体。高速、高精加工技术可极大地提高效率,提高产品的质量和档次,缩短生产周期和提高市场竞争能力。为此日本先端技术研究会将其列为5大现代制造技术之一,国际生产工程学会(ClRP)将其确定为21世纪的中心研究方向之一。在轿车工业领域,年产30万辆的生产节拍是40秒/辆,而且多品种加工是轿车装备必须解决的重点问题之
6、一;在航空和宇航工业领域,其加工的零部件多为薄壁和薄筋,刚度很差,材料为铝或铝合金,只有在高切削速度和切削力很小的情况下,才能对这些筋、壁进行加工.近来采用大型整体铝合金坯料掏空的方法来制造机翼、机身等大型零件来替代多个零件通过众多的钏钉、螺钉和其他联结方式拼装,使构件的强度、刚度和可靠性得到提高。这些都对加工装备提出了高速、高精和高柔性的要求。从EMO2001展会情况来看,高速加工中心进给速度可达80mmin,甚至更高,空运行速度可达Ioommin左右。目前世界上许多汽车厂,包括我国的上海通用汽车公司,己经采用以高速加工中心组成的生产线部分替代组合机床。美国CINCINNATI公司的Hype
7、rMach机床进给速度最大达60mmin,快速为100mmin,加速度达2g,主轴转速已达60OOOr/min。加工一薄壁飞机零件,只用30min,而同样的零件在一般高速铳床加工需3h,在普通铳床加工需8h;德国DMG公司的双主轴车床的主轴速度及加速度分别达12*!000rmm和1g。在加工精度方面,近10年来,普通级数控机床的加工精度已由10m提高到5m,精密级加工中心则从35m,提高到l1.5m,并且超精密加工精度已开始进入纳米级(0.01m).在可靠性方面,国外数控装置的MTBF值已达600Oh以上,伺服系统的MTBF值达到3000Oh以上,表现出非常高的可靠性。为了实现高速、高精加工,
8、与之配套的功能部件如电主轴、直线电机得到了快速的发展,应用领域进一步扩大。1.2 5轴联动加工和复合加工机床快速发展采用5轴联动对三维曲面零件的加工,可用刀具最佳几何形状进行切削,不仅光洁度高,而且效率也大幅度提高。一般认为,1台5轴联动机床的效率可以等于2台3轴联动机床,特别是使用立方氮化硼等超硬材料铳刀进行高速铳削淬硬钢零件时,5轴联动加工可比3轴联动加工发挥更高的效益。但过去因5轴联动数控系统、主机结构复杂等原因,其价格要比3轴联动数控机床高出数倍,加之编程技术难度较大,制约了5轴联动机床的发展。当前由于电主轴的出现,使得实现5轴联动加工的复合主轴头结构大为简化,其制造难度和成本大幅度降
9、低,数控系统的价格差距缩小。因此促进了复合主轴头类型5轴联动机床和复合加工机床(含5面加工机床)的发展。在EMO2001展会上,新日本工机的5面加工机床采用复合主轴头,可实现4个垂直平面的加工和任意角度的加工,使得5面加工和5轴加工可在同一台机床上实现,还可实现倾斜面和倒锥孔的加工。德国DMG公司展出DMUVoution系列加工中心,可在一次装夹下5面加工和5轴联动加工,可由CNC系统控制或CAD/CAM直接或间接控制。1.3 智能化、开放式、网络化成为当代数控系统发展的主要趋势21世纪的数控装备将是具有一定智能化的系统,智能化的内容包括在数控系统中的各个方面:为追求加工效率和加工质量方面的智
10、能化,如加工过程的自适应控制,工艺参数自动生成;为提高驱动性能及使用连接方便的智能化,如前馈控制、电机参数的自适应运算、自动识别负载自动选定模型、自整定等;简化编程、简化操作方面的智能化,如智能化的自动编程、智能化的人机界面等;还有智能诊断、智能监控方面的内容、方便系统的诊断及维修等。为解决传统的数控系统封闭性和数控应用软件的产业化生产存在的问题。目前许多国家对开放式数控系统进行研究,如美国的NGC(TheNextGenerationWork-Station/MachineControl)、欧共体的OSACA(OPenSystemArchitectureforControlwithinAuto
11、mationSystems)日本的OSEC(OPenSystemEnvironmentforController),中国的ONC(OPenNumericalControlSyStem)等。数控系统开放化已经成为数控系统的未来之路。所谓开放式数控系统就是数控系统的开发可以在统一的运行平台上,面向机床厂家和最终用户,通过改变、增加或剪裁结构对象(数控功能),形成系列化,并可方便地将用户的特殊应用和技术诀窍集成到控制系统中,快速实现不同品种、不同档次的开放式数控系统,形成具有鲜明个性的名牌产品。目前开放式数控系统的体系结构规范、通信规范、配置规范、运行平台、数控系统功能库以及数控系统功能软件开发工具
12、等是当前研究的核心。网络化数控装备是近两年国际著名机床博览会的一个新亮点。数控装备的网络化将极大地湎足生产线、制造系统、制造企业对信息集成的需求,也是实现新的制造模式如敏捷制造、虚拟企业、全球制造的基础单元。国内外一些著名数控机床和数控系统制造公司都在近两年推出了相关的新概念和样机,如在EM02001展中,日本山崎马扎克(MaZak)公司展出WuCyberProductionCenter(智能生产控制中心,简称CPe);日本大隈(OkUma)机床公司展出Tplaza(信息技术广场,简称IT广场);德国西门子(SiemenS)公司展出的OpenManufacturingEnvironment(开
13、放制造环境,简称OME)等,反映了数控机床加工向网络化方向发展的趋势。1.4 重视新技术标准、规范的建立1.4.1 关于数控系统设计开发规范如前所述,开放式数控系统有更好的通用性、柔性、适应性、扩展性,美国、欧共体和日本等国纷纷实施战略发展计划,并进行开放式体系结构数控系统规范(OMAC、OSACAsOSEC)的研究和制定,世界3个最大的经济体在短期内进行了几乎相同的科学计划和规范的制定,预示了数控技术的一个新的变革时期的来临。我国在2000年也开始进行中国的ONC数控系统的规范框架的研究和制定。1.4.2 关于数控标准数控标准是制造业信息化发展的一种趋势。数控技术诞生后的50年间的信息交换都
14、是基于ISO6983标准,即采用G,M代码描述如何(how)加工,其本质特征是面向加工过程,显然,他已越来越不能满足现代数控技术高速发展的需要。为此,国际上正在研究和制定一种新的CNC系统标准ISOI4649(STEP-NC),其目的是提供一种不依赖于具体系统的中性机制,能够描述产品整个生命周期内的统一数据模型,从而实现整个制造过程,乃至各个工业领域产品信息的标准化。STEP-NC的出现可能是数控技术领域的一次革命,对于数控技术的发展乃至整个制造业,将产生深远的影响。首先,STEP-NC提出一种崭新的制造理念,传统的制造理念中,NC加工程序都集中在单个计算机上。而在新标准下,NC程序可以分散在
15、互联网上,这正是数控技术开放式、网络化发展的方向。其次,STEP-NC数控系统还可大大减少加工图纸(约75%)、加工程序编制时间(约35%)和加工时间(约50%)目前,欧美国家非常重视STEP-NC的研究,欧洲发起了STEP-NC的IMS计划(1999.1.12001.12.31)。参加这项计划的有来自欧洲和日本的20个CADCAMCAPPCNC用户、厂商和学术机构。美国的STEPToolS公司是全球范围内制造业数据交换软件的开发者,他己经开发了用作数控机床加工信息交换的超级模型(SuPerMOdeI),其目标是用统一的规范描述所有加工过程。目前这种新的数据交换格式己经在配备了SIEMENSFIDIA以及欧洲OSACA-NC数控系统的原型样机上进行了验证。2对我国数控技术及其产业发展的基本估计我国数控技术起步于1958年,近50年的发展历程大致可分为3个阶段:第一阶段从1958年到1979年,即封闭式发展阶段。在此阶段,由于国外的技术封锁和我国的基础条件的限制,数控技术的发展较为缓慢。第二阶段是在国家的六五、七五期间以及八五的前期,即引进技术,消化吸收,初步建立起国产化体系阶段。在此阶段,由于改革开放和国家的重视,以及研究开发环境和国际环境的改善,我国数控技术的研究、开发以及在产品的国产化方面都取得了长足的进步。