《《5.4.1正弦函数、余弦函数的图象》2023年高频易错题集答案解析.docx》由会员分享,可在线阅读,更多相关《《5.4.1正弦函数、余弦函数的图象》2023年高频易错题集答案解析.docx(15页珍藏版)》请在优知文库上搜索。
1、人教A版(2019)必修第一册541正弦函数、余弦函数的图象2023年高频易错题集参考答案与试题解析一.选择题(共10小题)1己知y=sin(3x)(一条对称轴为X=兀,则叩=(A.B.-C.D.4436【分析】既然是对称轴,所以应该在此处取得最值,由此将X=代入函数值,令其4为1或-1,进而求角.【解答】解:因为y=sin(3x+0)(|0),f(-)=f=0-3的最小值为OIZLZ()A. 2B. 1C. 4D. 6【分析】要使3最小,只需周期最大,即两个零点间的距离为半个周期,由此求解.【解答】解:由题知,周期最大为=2x(4-)=,故选:A.【点评】本题考查三角函数的性质,属于基础题.
2、3 .已知a=2,b,2?,c=sin.l,则mb,C的大小关系正确的是()打K2A.abcB.cabC.acbD.bac0.90.9【分析】b=M=2V2=小构造函数,利用函数的单调性比较a,c,2由此可解决此题.0.90.9【解答】解:b=0.9 3=, :ab,TrTrTT又/(O)=g(0),则当XC(0,)时,Sinxx,6兀TT又0.1(0,)f贝USin0.则ca,9.cab.故选:B.【点评】本题考查三个数的大小的判断,考查构造法、函数性版等基础知识,考查数学运算能力及直观想象能力,属于基础题.4.函数y=2sin-l的定义域是()jrOTTA2k兀?2k兀勺(kz)B2k兀吟
3、,2k+2L(kz)C.2k,2k-A(kz)66QJTTTD2k冗-玲,2kK-(kz)OO【分析】由2sinie,结合正弦函数的图象即可确定其定义域.【解答】解:*2sinx-I0sinx/,2k兀X4f(x)=x0,匹上无解,选项。错误.22故选:C.【点评】本题主要考查了三角恒等变换以及三角函数的性质应用问题,也考查了命题的真假性判断问题,是中档题.7 .将函数f()=4cos伶X)和直线g(x)=X-I的所有交点从左到右依次记为4,A2,A3,,4”若P点坐标为(O,I),则|PA;+PA;+PA;I=()A.5&B.3V2C.2D.0【分析】根据题意作出图象,结合余弦函数的中心对称
4、性化简各个向量的和,即可得解.【解答】解:由题意作出图象如图,共得5个交点,根据余弦函数的中心对称性可知,Al和A5,A2和A4关于43对称,PA;=(1,1),所以两+两=两+西=2两,所以I西+花+西=5的=551CIl故选:A.TV-4-7【点评】本题考查了数形结合,余弦函数的对称性,向量加法运算问题,是中档题.A. 1个B. 2个C. 3个D.无数个8 .已知)WR,0,2),若对任意实数X均有SinX2cos(3+),则满足条件的有序实数对(3,)的个数为()【分析】根据SinAa-1,1,可分类讨论3=0,3W0时,结合正弦函数的图象与性质,即可得出答案.【解答】解:3R,0,2)
5、,任意实数X均有SinX2cos(+),1当3=0时,任意实数A均有SinX2cos,且SinX-l,1,V0,2),=冗时,符合题意;2任意实数X均有SinX2cos(+),即SinX2sin(x+-),TTVsinx-I,sin(x+-)-1,1,当且仅当任意实数X均有SinX=Sin(x+-),则3=1,JI11JI当3=1时,sinx=sin(x+-),则+-=2h,解得=-项-+2内1,&Z,.0,2),=-52L,符合题意;JI,JIJ(当=-1时,SinX=Sin(-x+)=-sin(x-)=sin(x-+),222-+=2,解得=2L.-2&,AZ,又.0,2),=-5-,符合
6、题意,综上所述,满足条件的有序实数对(3,)为(0,),(1,空),(-1,工),共有3个,故选:C.【点评】本题考查正弦函数的图象与性质和函数恒成立问题,考查转化思想和分类讨论思想,考查逻辑推理能力和运算能力,属于中档题.9.己知x(0,3j-),设函数/(x)=2COSX与函数g(X)=3tanx的图象交于为、22两点,过点P、P2作y轴的垂线,垂足分别为“、K,则四边形P1P2KH的面积为()A.3B.愿兀C.D.22【分析】先根据2cosx=3tanx,结合x的范围求出人然后结合题意可知所得四边形为一个直角梯形,据此求解.【解答】解:由已知得2cosx=3tanx,化简得2sin2x+
7、3sinx-2=0,解得SinX=工或-2(舍),由x(0,旦三)可知X=工或且L,2266故交点为Pld-,3)P2(器,3),则“(0,3),K(0,-3),166由题意可知该四边形为以“Pi,KP2为底边,K为高的直角梯形,所以S梯形=(hp1kp2)kh1 Z乙宗去噜)(-(一)=兀Z00故选:A.【点评】本题考查三角方程的解法,以及三角函数图象性质的应用,属于中档题.10.若函数f(x)=2cos(2X-)-1在0,6上的最小值小于零,则m的取值范围为3()a.2L,-2Lb.2L,+8)c.(-t22Ld.(,+)333333【分析】由己知可求Zr-2L-匹,2m-,利用换元法求出
8、角的范围,结合余弦333函数的图象求出函数的零点,利用数形结合进行转化求解即可.【解答】解:0,m,:.2x- -e-33设=2r-W-,P!J-t2m-f333作出函数y=2cosf-1的图象如图,由y=2cos-1=0得cos/=TrTT则r=+2或,=-+2内,33则当AO时的,第一个零点为/=三,3即当-ZLWf2L时,y=2cosr-120,33要使y=2cos-1在任-?二,2m-?匚上的最小值小于0,33则只需要2m-工匹,即可,33得2z&L,得机匹,33,I的取值范围为(工,+8).3【点评】本题主要考查了余弦函数的图象和性质的应用,利用换元法,求出函数的零点,以及利用数形结
9、合思想是解决本题的关键.综合性较强,有一定的难度.二.填空题(共5小题)11.己知函数/(x)=2sin(3x+2L)-w,x0,兀,有三个不同的零点x,X2,X3,69且JnVx2V3,则阳(xi+2x2+JG)的范围是,2).-L99一【分析】利用换元思想,令X=3x+着,然后将问题转化为y=2sinX,X曦,等上时的图象与y=m有三个不同交点的问题,据此求出m的范围.【解答】解:令X=3x+-三-,则原函数可化为y=2sinX-m,XWA,等有三个不同的零点,即y=M,与y=2sinX,XC竺-的图象有三个不同的交点,且62TrTTTrt=ITCxi=3xl4V,x2=3x2+V,x3=
10、3x34V,易知X+X2=2-=,3K乂2+乂3=2乂亍=3加所以Xi+2X2+X3-3CX+2X2+X3)十则半作出它们的图象如右:可知,当2si吟m2sin号,故lmV2,所以加(xi+2x2+x3)的范围是昌,驯l997TrTT12.己知函数y=2sin(OX一鼠)(30)图象与函数y=2sin(OH-)(CO0)图象相邻的三个交点依次为A,B,C,且aABC是钝角三角形,则的取值范围是(0,粤)_.【分析】作出函数y=2sin(cox-?L)和y=2sin(x+-)的图象,结合函数的图象,36求出AC、Bo的值,根据aABC是钝角三角形,列出不等式,从而求出3的取值范围.【解答】解:因为y=2sin(3-2L+2L)=2sin(x+-),所以函数y=2sin(cox-3263的图象向左平移三个单位得到函