专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx

上传人:王** 文档编号:903921 上传时间:2024-02-26 格式:DOCX 页数:12 大小:160.71KB
下载 相关 举报
专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx_第1页
第1页 / 共12页
专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx_第2页
第2页 / 共12页
专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx_第3页
第3页 / 共12页
专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx_第4页
第4页 / 共12页
专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx_第5页
第5页 / 共12页
专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx_第6页
第6页 / 共12页
专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx_第7页
第7页 / 共12页
专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx_第8页
第8页 / 共12页
专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx_第9页
第9页 / 共12页
专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx_第10页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx》由会员分享,可在线阅读,更多相关《专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用.docx(12页珍藏版)》请在优知文库上搜索。

1、专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用专题1阿波罗尼斯圆及其应用微点1阿波罗尼斯圆介绍及其直接应用【微点综述】动点的轨迹问题是高考中的一个热点和重点,尤其是阿波罗尼斯圆在高考中频频出现.处理此类问题的关键是通过建立直角坐标系,寻找动点满足的条件,得出动点的轨迹是一个定圆,从而把问题转化为直线和圆、圆和圆的位置关系问题,并在解决问题的过程中感悟转化与化归、化繁为简的数学思想方法.阿波罗尼斯(APolIOniUS约公元前262192),古希腊数学家,与欧几里得、阿基米德并称为亚历山大时期数学三巨匠.阿波罗尼斯年青时到亚历山大城跟随欧几里得的后继者学习,和当时的大数学家合作研究

2、.他对圆锥曲线有深刻而系统的研究,主要研究成果集中在他的代表作圆锥曲线论一书中,阿波罗尼斯圆是他的研究成果之一.1、阿波罗尼斯圆的定义在平面上给定两点48,设。点在同一平面上且满足普=4,当20且1时,P点的轨迹是个圆,称之为阿波罗尼斯圆.(义=1时尸点的轨迹是线段AA的中垂线)2、阿波罗尼斯圆的证明PA【定理1】设P(x,y),A(a,o),8(dO).若菽=A(05.l),则点尸的轨迹方程是(X-碧+),2=(簧j,其轨迹是以(驾口,o)为圆心,半径为的圆.证明:由RA=/IP8及两点间距离公式,可得(x+a)2+y2=42(-)2+y2,化简可得(I-尤卜2+02)y2+20+42)奴+

3、(-砌2=0,(1)当义=1时,得X=0,此时动点的轨迹是线段A3的垂直平分线:(2)当ll时,方程两边都除以1_万得+2+辿上士+6=0,化为标准形,,2式即为:2-l的圆.+T爱j,点P的轨迹方程是以(nT为圆心,半径为MB NB理及勾股定理得QB? = MB BN = 孚-,QA2 = AB2 + QB2 = ?,于是I2-II2-Iz4WWcIn图图图阿波罗尼斯圆的另一种形式:【定理2】A,3为两已知点,M,N分别为线段A8的定比为4(4)的内外分点,则以MN为直径的圆C上任意点尸到48两点的距离之比为九.证明:以义1为例.如图,设A8=2a,坐=丝=4,则AN=半,BN=生一2a=/

4、.过B作A8的垂线圆C交于Q,R两点,由相交弦定MQ,N同时在到A,B两点距离之比等于义的圆上,而不共线的三点所确定的圆是唯一的,.圆C上任意一点尸到48两点的距禽之比恒为4.同理可证0v2vl的情形.3、阿波罗尼斯圆的相关性质由上面定理2的证明可得如下的性质:性质1:当ll时,点B在圆C内,点A在圆。外;当0义1时,点A在圆C内,点B在圆C外.性质2:因AQ2=AMAN,故AQ是圆C的一条切线.若已知圆C及圆C外一点A,可以作出与之对应的点B,反之亦然.性质3:所作出的阿波罗尼斯圆的直径为MN =卢,4兀a/,面积为(力_/.性质4:过点A作圆C的切线AQ(Q为切点),则QM,QN分别为NA

5、QB的内、外角平分线.性质5:阿波罗尼斯圆的宜径两端是按比例内分A5和外分A5所得的两个分点,如图所示,M是48的内分点,N是AB的外分点,此时必有PM平分NAPB,PN平分NAPB的外角.证明:如图,由己知可得附嗡嚼,於。且eSNBM MB又 SyAM =;PA pMSin ZAPM,SAPBM=-PB PMsinZBPM 2PA PMsinZAPMPB PMSm/BPM -.sinAAPM=sinZBP,/.ZAPM=ABPM,/.PM平分/APB.由等角的余角相等可得NBPN=NDPN,PN平分/APB的外角.性质6:过点3作圆C不与QR重合的弦m,则AB平分/EAF.证明:如图,连结M

6、E,MF,由已知W=普=4,,普=会=警(40卜BEBkBrASgBFkB且ll),又cI,./AAdcIAfiAEsinZBAEEBAESMBE=-BAEsinNBAE,SMBF=-AHAFsmZ.BAF.-=22AB-AFsnZBAFFBAF:.sinNBAE=sinBAF,.ZBAE=乙BAF,48平分ZEAF.sin/BAE=sinZBAF,./BAE=/BAF,AB平分ZEAF.【典例刨析】例I.(2022河北盐山中学高二期中)1.已知两定点A(-2,l),B(2,-l),如果动点尸满足IPAl=P3,则点P的轨迹所包围的图形的面积等于.【答案】40;T【分析】设尸(,y),根据题设

7、条件,结合两点距离公式列方程并整理即可得P的轨迹方程,即知轨迹为圆,进而求其面积即可.【详解】设P(%,y),由题设得:(x+2)2+(y-l)2=2KX-2)2+(y+l)2,(X-6)2+(y+3)2=40,故尸的轨迹是半径为月的圆,图形的面积等于40万.故答案为:40;T例2.(2022四川涪陵月考)2 .若ABC满足条件AB=4,AC=2BC,则ABC面积的最大值为.【答案】y【分析】设BC=X,则AC=2x,由余弦定理得出cos3,根据三角形任意两边之和大于第三边得出工的范围,再由三角形面积公式,结合二次函数的性质得出答案.【详解】设BC=X,则AC=2文,由余弦定理可得cos8=S

8、+.72x)2=3二支24x8x由三角形任意两边之和大于第三边得解得Ux4,即袅/2x39SaAiC=TMSinB=2xJ1-c0(舍去),PAPB化简得:(10乃+2卜+3472-9=o,该式对任意的xw-3,R恒成立,故102+2a=0342-2-9=04 .在平面直角坐标XOy中,已知点A(LO),3(4,0),若直线x-y+m=0上存在点。使得IPAI=JPB则实数制的取值范围是.【答案】-22,22【分析】根据P4=gP4得出点尸的轨迹方程,又点产在直线x-y+帆=。上,则点。的轨迹与直线必须有公共点,进而解决问题.【详解】解:设洋乂1则IPAk(x-l)2+(y-O)2,PB=(x

9、-4)2+(y-0)2,因为IM=JP川,所以有(x-D2+(y-0)2=(x-4)2+(y-0)2,同时平方,化简得/+y2=4,故点P的轨迹为圆心在(0,0),半径2为的圆,又点尸在直线X-y+?=。上,故圆/+V=4与直线工-),+帆=0必须有公共点,所以IznlF+T2,解得一2五m2五.【点睛】本题考查了点的轨迹问题、直线与圆的位置关系的问题,解题的关键是能从题意中转化出动点的轨迹,并能求出点的轨迹方程.5 .阿波罗尼斯是古希腊著名数学家,与欧几里得、阿基米德被称为亚历山大时期数学三巨匠,他对圆锥曲线有深刻而系统的研究,阿波罗尼斯圆就是他的研究成果之一,指的是:已知动点M与两个定点A

10、,B的距禽之比为2(0,且;ll),那么点M的轨迹就是阿波罗尼斯圆.若平面内两定点A,8间的距离为2,动点尸满足相=6,则IPAr+P8的最大值为()A.16+83B.8+43C.7+43D.3+3【答案】A【分析】设A(To),8(1,0),P(x9y)f由翳=石,可得点P的轨迹为以(2,0)为圆心,半径为5的圆,又归1+仍呼=2(炉+丁+),其中f+),2可看作圆-2)2+y2=3上的点(,y)到原点(0,0)的距离的平方,从而根据圆的性质即可求解.【详解】解:由题意,设A(TO),8(1,0),P(xfy)f因为黑所以忙卑:必,即(-2)2+y2=3,附J(I)2+y2I7-所以点P的轨

11、迹为以(2,0)为圆心,半径为的圆,因为IPAl2+PB2=(+l)2+y2+(7)2+y2=2(2+y2+),其中9+,2可看作圆(丸-2)2+丁=3上的点(尤田到原点(0,0)的距离的平方,所以(3+y2)g=(2+4y=7+43,所以2(+y2+)L=6+8J,即附2十附2的最大值为16+8j,故选:A.例6.(2022四川.成都外国语学校高二月考)6.古希腊数学家阿波罗尼奥斯(约公元首262公元前190年)的著作圆锥曲线论是古代世界光辉的科学成果,著作中这样一个命题:平面内与两定点距离的比为常数2仕0且攵=1)的点的轨迹是圆,后人将这个圆称为阿波罗尼斯圆,已知点A(T,0),8(2,0

12、),圆C:a-2)2+(ym)2=;(m0),在圆上存在点产满足|网=2归同,则实数用的取值范围是()住kifa(呷d.ff【答案】D【分析】设尸(,y),根据I尸a=2pb求出点P的轨迹方程,根据题意可得两个圆有公共点,根据圆心距大于或等于半径之差的绝对值小于或等于半径之和,解不等式即可求解.【详解】设尸(X,y),因为点A(TO),B(2,0),P=2PBt所以J(X+1)2+y2=2J(X-2p+y2即2+y2_6x+5=0,所以(x-3)2+),2=4,可得圆心(3,0),半径R=2,由圆C:一2)2+(丁一根)2=;可得圆心6(2,加),半径r=g,因为在圆C上存在点。满足I尸A=2

13、P8,所以圆(x-3)2+y2=4与圆C:(工一2+(-=;有公共点,所以2-3J(3-2)+痴2+(,整理可得:1+P彳,解得:或22所以实数制的取值范围是冬耳,故选:D.【针对训练】7.在平面直角坐标系Xay中,己知圆O:/+y2=,Q-4p+y2=4,动点P在直线x+J)i=O上,过P点分别作圆O,的切线,切点分别为AI,若满足尸8=2的点P有且只有两个,则实数匕的取值范围是.20【答案】(-y,4).【分析】设出点的坐标,将原问题转化为宜线与圆相交的问题,求解关于力的不等式即可求得实数b的取值范围.【详解】由题意。(0,0)0(4,0).设PaJ),则:PB=2PA,Ja-4)2+)尸-4=2yx2+y2-1,(L4)2+y2=4(x2+y2),圆心坐标为Ho),半径为g,动点P在直线x+5厂氏0上,满足PB=ZPA的点P有且只有两个,工直线与圆X2+y2+X-y=0相交,I-I-J圆心到直线的距离,3/8,a=1l+33.416,416.b+,3333即实数b的取值范围是卜弓,4).【点睛】本题主要考查圆的方程及其应用,等价转化的数学思想,直线与圆是位置关系的应用等知识,意在考查学生的转化能力和计算求解

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 办公文档 > 演讲致辞

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!