《2023年一元一次方程知识点和常考题型解析.docx》由会员分享,可在线阅读,更多相关《2023年一元一次方程知识点和常考题型解析.docx(14页珍藏版)》请在优知文库上搜索。
1、一元一次方程知识点和常考题型知识点复习巩固知识点一:一元一次方程及解的概念1、一元一次方程:A一元一次方程的标准形式是:ax+b=O(其中X是未知数,a,b是已知数,且a0)o要点诠释:一元一次方程须满足下列三个条件:(1)只具有一个未知数;4(2)未知数的次数是1次;A(3)整式方程.A注意:方程要化为最简形式,且一次项系数不能为零。2、方程的解:A判断一个数是否是某方程的解:将其代入方程两边,看两边是否相等.A知识点二:一元一次方程的解法Al、方程的同解原理(也叫等式的基本性质)等式的性质1:等式两边加(或减)同一个数(或式子),结果仍相等。A假如以二,那么ac=bc.(C为一个数或一个式
2、子)。等式的性质2:等式两边乘同一个数,或除以同一个不为0的数,结果仍相等。Aa_b假如a=b,那么ac=bc.假如a=b(cO),那么7要点诠释:分数的分子、分母同时乘以或除以同一个不为0的数,分数的值不变。a _即:b btn b w (其中m0)42、解一元一次方程的一般环节:A常用环节去分母具体做法依据注意事项去括号移项在方程两边都乘以 各分母的最小公倍 数一般先去小括号, 再去中括号,最后 去大括号把具有未知数的项等式基本性质2去括号法则、分 派律等式基本性质1防止漏乘(特别整数项),注意添括号;注意变号,防止漏乘;移项要变号,不移不变都移到方程的一边,其他项都移到方程 的另一边(记
3、住移项 要变号)合并同类 把方程化成ax=b(a合并同类项法则项0)的形式系数化成1在方程两边都除以 等式基本性质2 未知数的系数a,得 到方程A的解X= b要点诠号;计算要仔细,不要出差 错;计算要仔细,分子分母 勿颠倒理解方程ax= b在不同条件下解的各种情况,并能进行简朴应用:Aa_ b O时,方程有唯一解一 5 Aa=O , b=0时,方程有无数个解;a=0,b0时,方程无解。知识点三:列一元一次方程解应用题1、列一元一次方程解应用题的一般环节:(1)审一审题:认真审题,弄清题意,找出可以表达本题含义的相等关系。(2)设一设出未知数:根据提问,巧设未知数.(3)列一列出方程:设出未知数
4、后,运用等量关系写出等式,即列方程。(4)解一解方程,解所列的方程,求出未知数的值.(5)答一检查,写答案:检查所求出的未知数的值是否是方程的解,是否符合实际,检查后写出答案,注意带上单位。2a、常见的一些等量关系常见列方程解应用题的几种类型:知识点三:方程与整式、等式的区别(1)从概念来看:整式:单项式和多项式统称整式。等式:用等号来表达相等关系的式子叫做等式。如2+3=5,m=n=n+等都叫做等式,而像一3a+2b,3m2n不含等号,所以它们不是等式,而是代数式。A方程:具有未知数的等式叫做方程。如5x+3=ll.理解方程的概念必须明确两点:是等式;具有未知数。两者缺一不可。(2)从是否具
5、有等号来看:方程一方面是一个等式,它是用将两个代数式连接起来的等式,而整式仅用运算符号连接起来,不具有等号。A(3)从是否具有未知量来看:等式必具有“=,但不一定具有未知量;方程既具有,又必须具有未知数。但整式必不具有等号,不一定具有未知量,分为单项式和多项式。二常见应用题举例1、一般行程问题(相遇与追击问题)1 .行程问题中的三个基本量及其关系:路程=速度X时间时间=路程速度速度=路程时间2 .行程问题基本类型(1)相遇问题:快行距+慢行距=原距(2)追及问题:快行距.慢行距=原距1、从甲地到乙地,某人步行比乘公交车多用3.6小时,已知步行速度为每小时8千米,公交车的速度为每小时4O千米,设
6、甲、乙两地相距*千米,则列方程为o解:等量关系步行时间一乘公交车的时间=3.6小时列出方程是:之一/-二3.68402、某人从家里骑自行车到学校。若每小时行15千米,可比预定期间早到15分钟;若每小时行9千米,可比预定期间晚到15分钟;求从家里到学校的路程有多少千米?解:等量关系(1)速度15千米行的总路程=速度9千米行的总路程(2)速度15千米行的时间+15分钟=速度9千米行的时间75分钟提醒:速度已知时,设时间列路程等式的方程,设路程列时间等式的方程。方法一:设预定期间为X小/时,则列出方程是:15(-O.25)=9(x+0.25)X15X15方法二:设从家里到学校有X千米,则列出方程是:
7、2-215609603、一列客车车长200米,一列货车车长280米,在平行的轨道上相向行驶,从两车头相碰到两车车尾完全离开通过16秒,已知客车与货车的速度之比是3:2,问两车每秒各行驶多少米?提醒:将两车车尾视为两人,并且以两车车长和为总路程的相遇问题。等量关系:快车行的路程+慢车行的路程二两列火车的车长之和设客车的速度为3x米/秒,货车的速度为2X米/秒,则163x+162x=200+2804、与铁路平行的一条公路上有一行人与骑自行车的人同时向南行进。行人的速度是每小时3.6km,骑自行车的人的速度是每小时10.8km。假如一列火车从他们背后开来,它通过行人的时间是22秒,通过骑自行车的人的
8、时间是26秒。行人的速度为每秒多少米?这列火车的车长是多少米?提醒:将火车车尾视为一个快者,则此题为以车长为提前量的追击问题。等量关系:两种情形下火车的速度相等两种情形下火车的车长相等在时间已知的情况下,设速度列路程等式的方程,设路程列速度等式的方程。解:行人的速度是:3.6km时二3600米36OO秒二1米/秒骑自行车的人的速度是:10.8km时=10800米3600秒=3米/秒(2)方法一:设火车的速度是X米/秒,则26X(-3)=22X(X-I)解得*4方法二:设火车的车长是X米,则X+221_26322-26-6、一次远足活动中,一部分人步行,另一部分乘一辆汽车,两部分人同地出发。汽车
9、速度是60千米/时,步行的速度是5千米/时,步行者比汽车提前1小时出发,这辆汽车到达目的地后,再回头接步行的这部分人。出发地到目的地的距离是60千米。问:步行者在出发后通过多少时间与回头接他们的汽车相遇(汽车掉头的时间忽略不计)提醒:此类题相称于环形跑道问题,两者行的总路程为一圈即步行者行的总路程+汽车行的总路程=60X2解:设步行者在出发后通过X小时与回头接他们的汽车相遇,则5x+60(X-1)=6O27、某人计划骑车以每小时12千米的速度由A地到B地,这样便可在规定的时间到达B地,但他因事将原计划的时间推迟了20分,便只好以每小时15千米的速度前进,结果比规定期间早4分钟到达B地,求A、B
10、两地间的距离。解:方法一:设由A地到B地规定的时间是X小时,则(204A12x=l5XX=212X=I2X2=24(千米)606J方法二:设由A、B两地的距离是X 千米,则(设路程,列时间等式)XY204=+=24答:A、B两地的距离是24千米。12156060温馨提醒:当速度已知,设时间,列路程等式;设路程,列时间等式是我们的解题策略。8、一列火车匀速行驶,通过一条长300m的隧道需要2Os的时间。隧道的顶上有一盏灯,垂直向下发光,灯光照在火车上的时间是10s,根据以上数据,你能否求出火车的长度?火车的长度是多少?若不能,请说明理由。解析:只要将车尾看作一个行人去分析即可,前者为此人通过30
11、0米的隧道再加上一个车长,后者仅为此人通过一个车长。此题中告诉时间,只需设车长列速度关系,或者是设车速列车长关系等式。解:方法一:设这列火车的长度是X米,根据题意,得300+XX=*=300答:这列火车长300米。2010方法二:设这列火车的速度是X米/秒,根据题意,得20-300=1OXX=30IOX300答:这列火车长300米。9、甲、乙两地相距X千米,一列火车本来从甲地到乙地要用15小时,开通高速铁路后,车速平均每小时比本来加快了60千米,因此从甲地到乙地只需要10小时即可到达,列方程YY得。答案:-=60101510、两列火车分别行驶在平行的轨道上,其中快车车长为100米,慢车车长15
12、0米,已知当两车相向而行时,快车驶过慢车某个窗口所用的时间为5秒。两车的速度之和及两车相向而行时慢车通过快车某一窗口所用的时间各是多少?假如两车同向而行,慢车速度为8米/秒,快车从后面追赶慢车,那么从快车的车头赶上慢车的车尾开始到快车的车尾离开慢车的车头所需的时间至少是多少秒?解析:快车驶过慢车某个窗口时:研究的是慢车窗口的人和快车车尾的人的相遇问题,此时行驶的路程和为快车车长!慢车驶过快车某个窗口时:研究的是快车窗口的人和慢车车尾的人的相遇问题,此时行驶的路程和为慢车车长!快车从后面追赶慢车时:研究的是快车车尾的人追赶慢车车头的人的追击问题,此时行驶的路程和为两车车长之和!解:(1)两车的速
13、度之和二1005=20(米/秒)慢车通过快车某一窗口所用的时间=15020=7.5(秒)设至少是X秒,(快车车速为208)则(20-8)X-8x=100+150x=62.5答:至少62.5秒快车从后面追赶上并所有超过慢车。11、甲、乙两人同时从A地前往相距25.5千米的B地,甲骑自行车,乙步行,甲的速度比乙的速度的2倍还快2千米/时,甲先到达B地后,立即由B地返同,在途中碰到乙,这时距他们出发时已过了3小时。求两人的速度。解:设乙的速度是X千米/时,则3+3(2x+2)=25.52x=52x+2=12答:甲、乙的速度分别是12千米/时、5千米/时。二、环行跑道与时钟问题:1、在6点和7点之间,
14、什么时刻时钟的分针和时针重合?老师解析:6:00时分针指向12,时针指向6,此时二针相差180,在6:007:OO之间,通过X分钟当二针重合时,时针走了0.5x分针走了6x以下按追击问题可列出方程,不难求解。解:设通过X分钟二针重合,则6x=180+O.5x解得X=型=32色11112、甲、乙两人在400米长的环形跑道上跑步,甲分钟跑240米,乙每分钟跑200米,二人同时同地同向出发,几分钟后二人相遇?若背向跑,几分钟后相遇?老师提醒:此题为环形跑道上,同时同地同向的追击与相遇问题。解:设同时同地同向出发X分钟后二人相遇,则240-20x=400X=10设背向跑,x分钟后相遇,则240x+200x=400X=A3、在3时和4时之间的哪个时刻,时钟的时针与分针:重合;成平角;成直角;解:设分针指向3时X分时两针重合。x=53+-XX=161211114答:在3时16分时两针重合。11x = 49- 11C 8 x = 32-(2)设分针指向3时X分时两针成平角。=53+-x+60212答:在3时49分时两针成平角。11(3)设分针指向3时X分时两针成直角=53+-x+60412Q答:在3时32上分时两针成直角。114、某钟表每小时比标准时间慢3分钟。若在清晨6时30分与准确时间对准,则当天中午该钟表指示时间为12时50分时,准确时间是多少?解:方法一:设准