《基于PROE的机械手设计.docx》由会员分享,可在线阅读,更多相关《基于PROE的机械手设计.docx(16页珍藏版)》请在优知文库上搜索。
1、目录第一章绪论11.1 机械手的介绍11.2 机械手的开展概况11.2. 1目的和现实意义21.2.2 国内外研究现状21.2.3 开展和研究方向3第二章Pro/ENGINEER软件介绍52. 1Pro/ENGINEER产品介绍53. 2Pro/ENGINEER概述52. 3Pro/ENGINEER的特点7第三章六自由度机械手零件的建模93. 1六自由度机械手手指建模93. 2六自由度机械手手掌建模123. 3六自由度机械手手腕建模133. 4六自由度机械手手臂建模143. 5六自由度机械手垂直轴旋转体建模153. 6六自由度机械手垂直轴支撑体建模154. 7六自由度机械手底座建模16第四章六
2、自由度机械手的装配175. 1Pro/ENGINEER的装配17六自由度机械手装配步骤及方法17第五章六自由度机械手的运动仿真19196. 2进入机构模块197. 3添加“伺服电动机201. 4定义初始条件215. 5定义分析226. 6运动仿真视频制作23致谢25参考文献26基于PR0/E六自由度机械手参数化建模及运动仿真摘要:通过Pro/E这个三维软件工具来进行六自由度机械手的参数化建模设计,完整表达产品设计的根木流程,提出一种产品设计的新思路,展示Pro/E在产品设计上的优势。首先利用Pro/E便捷的建模工具来对机械手的各零件进行造型设计:然后利用Pro/E按要求对机械手零件以各种约束和
3、销钉等连接来进行合理装配;接着利用Pro/E的机构模式对机械手的装配作添加伺服器等操作,来实现六自由度机械手的运动仿真。Pro/E方便的实现了对六自由度机械手的装配和运动仿真,效果非常直观。关键字:Pro/E:机械手:建模:运动仿真ParametricModelingandSimulationofSixdegreesoffreedommanipulatorBasedonPro/EAbstractByPro/Esoftwaretlstocarryoutthisthree-dimensionalsixdegreesoffreedommanipulatorparametricmodelingdesi
4、gn,completeproductdesignreflectsthebasicprocess,presentsanewideaofproductdesign,displayPro/Eintheproductdesignadvantages.FirstuseofPro/EandconvenientmodelingtoolstothevariousPartSofthemanipulatorformodelingdesign;thenusingPro/Easrequiredinvariouspartsofthemanipulatorsuchasconnectivityconstraintsandp
5、inassemblytobereasonable;thenusePro/Einthebodymodelofthemanipulatorassemblyoperationssuchasaddingserverstoachievesixdegreesoffreedommanipulatormotionsimulation.Pro/Etofacilitatetheimplementationofthemanipulatorsofthesixdegreesoffreedomofassemblyandmotionsimulation,theeffectisveryintuitive.KeywordsrP
6、roZE;Manipulator;Modeling;MotionSimulation第一章绪论1.1 机械手的介绍机械手是一种能模仿人手和臂膀的某些动作功能,用以按固定程序抓取、搬运物件或操作工具的自动操作装置。广泛应用于机械制造、冶金、电子、轻工和原子能等部门。机械手主要由手部和运动机构组成。手部是用来抓持工件(或工具)的部件,根据被抓持物件的形状、尺寸、重量、材料和作业要求而有多种结构形式,如夹持型、托持型和吸附型等。运动机构,使手部完成各种转动(摆动)、移动或复合运动来实现规定的动作,改变被抓持物件的位置和姿势。运动机构的升降、伸缩、旋转等独立运动方式,称为机械手的自由度。为了抓取空间中
7、任意位置和方位的物体,需有6个自由度。自由度是机械手设计的关键参数,自由度越多,机械手的灵活性越大,通用性越广,其结构也越复杂。一般专用机械手有23个自由度。机械手的种类,按驱动方式可分为液压式、气动式、电动式、机械式机械手;按适用范围可分为专用机械手和通用机械手两种;按运动轨迹控制方式可分为点位控制和连续轨迹控制机械手等。机械手通常用作机床或其他机器的附加装置,如在自动机床或自动生产线上装卸和传递工件,在加工中心中更换刀具等,一般没有独立的控制装置。有些操作装置需要由人直接操纵,如用于原子能部门操持危险物品的主从式操作手也常称为机械手。1.2 机械手的开展状况机器人的历史并不算长,1959年
8、美国英格伯格和德沃尔制造出世界上第一台工业机器人,机器人的历史才真正开始。英格伯格在大学攻读伺服理论,这是一种研究运动机构如何才能更好地跟踪控制信号的理论。德沃尔曾于1946年创造了一种系统,可以“重演所记录的机器的运动。1954年,德沃尔又获得可编程机械手专利,这种机械手臂按程序进行工作,可以根据不同的工作需要编制不同的程序,因此具有通用性和灵活性,英格伯格和德沃尔都在研究机器人,认为汽车工业最适于用机器人干活,因为是用重型机器进行工作,生产过程较为固定。1959年,英格伯格和德沃尔联手制造出第一台工业机器人。它成为世界上第一台真正的实用工业机器人。此后英格伯格和德沃尔成立了尤尼梅逊公司,兴
9、办了世界上第一家机器人制造工厂。第一批工业机器人被称为“尤尼梅特,意思是万能自动。他们因此被称为机器人之父。1962年美国机械与铸造公司也制造出工业机器人,称为沃尔萨特兰,意思是万能搬动。尤尼梅特和“沃尔萨特兰就成为世界上最早的、至今仍在使用的工业机器人。近百年来开展起来的机器人,大致经历了三个成长阶段,也即三个时代。第一代为简单个体机器人,第二代为群体劳动机器人,第三代为类似人类的智能机器人,它的未来开展方向是有知觉、有思维、能与人对话。第一代机器人属于示教再现型,第二代那么具备了感觉能力,第三代机器人是智能机器人,它不仅具有感觉能力,而且还具有独立判断和行动的能力。英格伯格和德沃尔制造的工
10、业机器人是第一代机器人,属于示教再现型,即人手把着机械手,把应当完成的任务做一遍,或者人用示教控制盒发出指令,让机器人的机械手臂运动,一步步完成它应当完成的各个动作。1.2.1 目的和现实意义在现代工业中,生产过程中的自动化已成为突出的主题。各行各业的自动化水平越来越高,现代化加工车间,常配有机械手。其目的和现实意义在于:一是提高生产效率,因为在机械工业中,加工、装配等生产很大程度上不是连续的。据资料介绍,美国生产的全部工业零件中,有75是小批量生产;金属加工生产批量中有四分之三在50件以下,零件真正在机床上加工的时间仅占零件生产时间的5乳从这里可以看出,装卸、搬运等工序机械化的迫切性,工业机
11、械手就是为实现这些工序的自动化而产生的。二是应用机械手可以代替人从事单调、重复或繁重的体力劳动,实现生产的机械化和自动化。三是代替人在有害环境下的手工操作,改善劳动条件,保证人身平安。20世纪40年代后期,美国在原子能实验中,首先采用机械手搬运放射性材料,人在平安间操纵机械手进行各种操作和实验。50年代以后,机械手逐步推广到工业生产部门,用于在高温、污染严重的地方取放工件和装卸材料,也作为机床的辅助装置在自动机床、自动生产线和加工中心中应用,完成上下料或从刀库中取放刀具并按固定程序更换刀具等操作。目前在我国机械手常用于完成的工作有:注塑工业中从模具中快速抓取制品并将制品传诵到下一个生产工序;机
12、械手加工行业中用于取料、送料;浇铸行业中用于提取高温熔液等等。1.2.2 国内外研究现状从94年美国开发出“虚拟轴机床以来,这种新型装置已成为国际研究的热点之一,纷纷探索开拓其实际应用的领域。我国的工业机器人从80年代“七五科技攻关开始起步,在国家的支持下,通过七五、八五科技攻关,目前己根本掌握了机器人操作机的设计制造技术、控制系统硬件和软件设计技术、运动学和轨迹规划技术,生产了局部机器人关键元器件,开发出喷漆、弧焊、点焊、装配、搬运等机器人;其中有130多台套喷漆机器人在二十余家企业的近30条自动喷漆生产线(站)上获得规模应用,弧焊机器人已应用在汽车制造厂的焊装线上。但总的来看,我国的工业机
13、器人技术及其工程应用的水平和国外比还有一定的距离,如:可靠性低于国外产品,机器人应用工程起步较晚,应用领域窄,生产线系统技术与国外比有差距。在应用规模上,我国己安装的国产工业机器人约200台,约占全球已安装台数的万分之四。以上原因主要是没有形成机器人产业,当前我国的机器人生产都是应用户的要求,品种规格多、批量小、零部件通用化程度低、供货周期长、本钱也不低,而且质量、可靠性不稳定。因此迫切需要解决产业化前期的关键技术,对产品进行全面规划,搞好系列化、通用化、模块化设计,积极推进产业化进程。我国的智能机器人和特种机器人在863方案的支持下,也取得了不少成果。其中最为突出的是水下机器人,600Om水
14、下无缆机器人的成果居世界领先水平,还开发出直接遥控机器人、双臂协调控制机器人、爬壁机器人、管道机器人等机种。在机器人视觉、力觉、触觉、声觉等根底技术的开发应用上开展了不少工作,有了一定的开展根底。但是在多传感器信息融合控制技术、遥控加局部自主系统遥控机器人、智能装配机器人、机器人化机械等的开发用方面那么刚刚起步,与国外先进水平差距较大,需要在原有成绩的根底上,有重点地系统攻关,才能形成系统配套可供实用的技术和产品,以期在十五后期立于世界先进行列之中。1.2.3 开展和研究方向在工业生产中应用的机械手被称为工业机械手。工业机械手是近代自动控制领域中出现的一项新技术,并已成为现代机械制造生产系统中
15、的一个重要组成局部,这种新技术开展很快,逐渐成为一门新兴的学科一一机械手工程。机械手涉及到力学、机械学、电器液压技术、自动控制技术、传感器技术和计算机技术等科学领域,是一门跨学科综合技术。工业机器人不断向着高速度、高精度、高可靠性、便于操作和维修等性能提高,而单机价格却不断下降。机械结构向模块化、可重构化开展。例如关节模块中的伺服电机、减速机、检测系统三位一体化:由关节模块、连杆模块用重组方式构造机器人整机,国外已有模块化装配机器人产品问市。工业机器人控制系统向基于PC机的开放型控制器方向开展,便于标准化、网络化,器件集成度提高,控制柜日见小巧,且采用模块化结构,大大提高了系统的可靠性、易操作
16、性和可维修性。机器人中的传感器作用日益重要,除采用传统的位置、速度、加速度等传感器外,装配、焊接机器人还应用了视觉、力觉等传感器,而遥控机器人那么采用视觉、声觉、力觉、触觉等多传感器的融合技术来进行环境建模及决策控制,多传感器融合配置技术在产品化系统中已有成熟应用。虚拟现实技术在机器人中的作用已从仿真、预演开展到用于过程控制,如使遥控机器人操作者产生置身于远端作业环境中的感觉来操纵机器人。当代遥控机器人系统的开展特点不是追求全自治系统,而是致力于操作者与机器人的人机交互控制,即遥控加局部自主系统构成完整的监控遥控操作系统,使智能机器人走出实验室进入实用化阶段。美国发射到火星上的索杰纳机器人就是这种系统成功应用的最著名实第二章Pro/ENGINEER软件介绍1 .1Pro/