《《机械原理》教案——第3章 平面机构的运动分析.docx》由会员分享,可在线阅读,更多相关《《机械原理》教案——第3章 平面机构的运动分析.docx(24页珍藏版)》请在优知文库上搜索。
1、机械原理教案第三章平面机构的运动分析内容提要本章主要介绍机构运动分析的目的和方法,重点介绍了三种机构运动分析方法,即重点介绍了三种机构运动分析方法,即速度瞬心法、相对运动图解法和解析法。3.1机构运动分析的目的和方法3.1.1机构运动分析的目的机构运动分析是在不考虑外力的作用和构件的弹性变形,以及运动副间隙对机构运动影响的情况下,根据己知机构的运动简图和原动件的运动规律,求解机构中其他构件的位移(角位移)、速度(角速度)和加速度(角加速度)等运动参数。机构的运动分析是了解机械的运动性能的依据,对正确地了解与应用机构的运动性能和校核所设计的机构是否满足设计要求有重要的作用。3.1.2机构运动分析
2、的方法机构运动分析的方法主要有图解法和解析法,图解法又分为相对运动图解法和速度瞬心法。图解法对简单的平面机构设计具有形象、直观、图解过程简单易行等特点,是运动分析的基本方法,但精度不高,而且对机构的一系列位置进行分析时,需反复作图而显得繁琐。解析法需根据机构中的己知参数建立数学模型,然后借助计算机进行求解,它不仅可方便地对机构进行一个运动循环过程的研究,而且还便于把机构分析和综合问题联系起来,以求得最优方案。由于解析法具有较高的精度,现在被广泛使用。本章将对上述两种方法在平面机构运动分析中的运用分别加以介绍。3.2用速度瞬心法对机构进行速度分析3.2.1速度瞬心及机构中速度瞬心的数目作平面相对
3、运动的两构件,在任一瞬时位置其相对运动均可看作是绕某一重合点的相对转动。该重合点即为相对转动中心,称为速度瞬心(instantaneouscenterofvelocity),简称瞬心。构件i、j之间的瞬心用符号Pij表示。因此,两构件在瞬心点处的相对速度为零,其绝对速度相等。若瞬心的绝对速度为零,则称为绝对瞬心(absoluteinstantaneouscenter),运动构件与机架之间的瞬心即为绝对瞬心若瞬心的绝对速度不为零,则称为相对瞬心,两运动构件之间的瞬心即为相对瞬心(TelativeinstantaneouscenlerM因为机构中每两个构件间就有一个瞬心,所以有N个构件组成的机构,
4、其总的瞬心数K为.W(N-I)2(3-1)3.2.2机构中速度瞬心的确定1.通过运动副直接相连的两构件间的瞬心通过运动副直接相连的两构件间的瞬心可以通过直接观察即可确定。(1)以转动副相连接的两构件的瞬心在转动副的中心处。如图3-la所示的构件1和构件2的瞬心子就在两构件的转动副的中心处。(2)以移动副相连接的两构件间的瞬心位于垂克于导路方向的无穷远处,如图3-lb所示的%位于垂直于构件1和构件2所构成的移动副导路方向的无穷远处。(3)以平面高副相连接的两构件间的瞬心,当高副两元素作纯滚动时就在接触点处,如图3-lc所示的Pi2即为构件1和构件2的接触点M;当高副两元素间有相对滑动时,则在过接
5、触点两高副元素的公法线上,如图3-ld所示的构件1和构件2之间存在相对滑动速度VMlM2,则二者的瞬心就位于法线-上。不过困为滚动和滑动的数值尚不知,所以还不能确定它是在法线上的那一点。(a)(b)(c)(d)图3-1观察法确定速度瞬心2.不直接相连的两构件的瞬心不直接相连的两构件间的瞬心位置,可借助三心定理来确定。所渭三心定理(Kennedy-AroUndtheorem),即三个彼此作平面运动的构件的三个瞬心必位于同一直线上。如图3-2所示构件1、2、3彼此作相对平面运动,它们之间共有三个瞬心A、七尸鼻。其中63、/分别在构件1、3和2、3之间转动副的转动中心0I、Q处,而不直接通过运动副相
6、连的两构件1、2之间的瞬心%必位于83、B3的连线上。有了直接观察法和三心定理便可确定机构的全部瞬心位置。但对多杆机构,构件越多,瞬心数目就越多,求解不大方便。为此,下面提出用瞬心多边形和上述两种方法相结合来求取瞬心。具体求法如下图3-2三心定理(I)先画一个圆,然后按照机构的构件数分割该圆,并在分割点上依次(顺时针或逆时针)标注构件号。(2)通过直接观察法求瞬心。将能直接观察求出瞬心位置的两构件的分割点用实线相连,则此实线即代表已知的该两构件间的瞬心。(3)观察在圆中尚未连线的分割点,将能连成两个三角形的公共边的点用虚线连接,则此虚线就代表可求取的未知瞬心。(4)在有公共边的两个三角形中,每
7、个三角形的3条边代表3个构件的3个瞬心。根据三心定理,这3个瞬心必在同一直线上。现在三角形除公共虚边以外的另外两个边代表的2个瞬心已知,在机构图上用直线连接这两个边代表的已知瞬心,则公共虚边代表的未知瞬心必定位于这一直线上。这样,两个三角形的各个己知两边代表的两个己知瞬心共作出2条直线,2条直线的交点就是公共虚边代表的未知瞬心。(5)确定公共虚边代表的未知瞬心后,公共虚边可画成实边,重复前述步骤,可以确定其他待求的未知瞬心。【例3-1】如图3-3所示为一较链四杆机构,试确定该机构全部瞬心的位置。(b)图3-3较链四杆机构瞬心的确定解:该机构瞬心的数目为K=MN-D=4(4-1)=6,分别为片,
8、、4、%、%224。其中,宜接观察可得到瞬心%、%、吊4、片4分别在转动副A、5、C、。的回转中心e3和八4则需借助于三心定理确定,由于构件1、2、3的三个瞬心尸12、八3、%应位于同一条直线上,构件1、4,3三个瞬心64、Pm、/也应位于同一条直线上,因此两直线的交点即瞬心心:同理,直线片2%和%&的交点即瞬心%。活动构件1、2、3与机架4之间的瞬心故,、巴4、4为绝对瞬心,而活动构件之间的瞬心%、%、%则为相对瞬心。利用三心定理求瞬心时,为了迅速准确地找到其位置,有两种方法:其一是“下标同号消去法”,如图3-3所示,63一定在62、巴3的连接线上,也一定在64、4的连接线上,两线的交点即及
9、L一条宜线上的三个瞬心,其中一个的下标一定是另外两个消去相同下标后的组合。其二是“瞬心多边形法”,如图3-3左上角所示,以构件编号表示多边形的顶点,任意两顶点的连线表示相应两构件的瞬心。首先把直接成副的两构件瞬心仔2、吕3、Pm、P在瞬心多边形中连成实线,把待求的不直接成副的两构件瞬心63、巴4连成虚线。根据三心定理,在瞬心多边形中,任意三角形的三条边所代表的三个瞬心均共线。因此,求未知瞬心时,可在瞬心多边形中找到以代表该瞬心的虚线为公共边的两个三角形,在机构图中作出相应的两条直线,其交点即为所求。例如,代表未知瞬心P13的虚线是A123和A143的公共边,所以它既与62、鸟3共线又与4、吊4
10、共线,连接%、%和%、吊4,其交点为%。利用瞬心多边形,特别有助于确定构件数目较多的机构的瞬心。3.3.3瞬心在机构速度分析中的应用下面举例说明利用速度瞬心对机构进行速度分析的方法。1.求线速度【例3-2】如图34所示的凸轮机构,已知各构件的尺寸和凸轮转速例,求推杆2的速度V2。v2 = vP 12 =1(耳3弓2),由1解:首先通过直接观察求得瞬心%和53,然后根据三心定律和公法线力求得瞬心%的位置。由此求得瞬心%的速度%户12长度直接从图上量取。图3-4图解法求凸轮机构的线速度2.求角速度1)较链机构【例3-3】如图3-3所示的较链四杆机构,已知各构件的尺寸和原动件1的角速度也,试求构件3
11、的角速度吗和角速比%/令。解:将%视为构件1上的点,则有将%视为构件3上的点,则有vP13=ft,3P34P13由瞬心的定义可得例 /p 14PI3 = 3 p34P 13转换后得上式表明,两构件之间的角速比例/吗(即传动比)与该两构件的绝对瞬心44、居4至相对瞬心%的距离成反比。此关系可以推广到平面机构中任意两构件i与/之间(设构件4为机架),即些=4jR一研若相对瞬心尸U在绝对瞬心匕、P4之间,则构件i与/的转向相反:否则,转向相同。【例37】如图3-5所示为按长度比例尺从画出的平锻机工件夹紧机构运动简图,该机构是一个复杂的平面In级机构。已知原动件A8的角速度外的大小和方向(如图所示),
12、求0?、03、g、叫的大小及方向。解:由于构件2上点B的速度方向及大小已知(.=屈I).如果能求出其绝对瞬心八6,则包和VC可以求出。如果再能求出心6,则根据也可以求出吗、VD和昨,于是可以解出04和g。所以解题的关键在于求出绝对瞬心鸟6与4的位置。吕6和巴6的位置可按以下方法求出。标出图中各较链所示的瞬心?16、仔2、吕3、P34、P”、&和八6。根据三心定理及已知的瞬心,&应位于直线吊56与直线当486的交点上,在图上首先作出&,从而可作出两条直线反瓦与后石,在图上作出其交点即求得吊6。按前面的分析得%鸟6*例里必,方向为逆时针片2&IVD=g&61,方向如图气=03%优61,方向如图S
13、Zk4金p2支&为一 ,方向为逆时针vP23 = Al (鸟3 片2),%vP23 = Al (&片3),叫VC = W2 &修3*1方向垂直于鸟6心3,向左,故鸟3吕6226 2336叫g型空方向为顺时针所以EF四5片6 _ 3 r2匕6 . %生6 ,吕5吊6 p35 g66 226,% 36,伤5 心6,方向为顺时针图3-5平锻机工件央紧机构运动简图2)高副机构【例3-5】如图3-6所示凸轮机构中,己知构件2的转速例,求构件3的角速度?。解:首先用三心定律求出八3,求瞬心用3的速度:例3-6】如图3,所示为一直动从动件凸轮机构。设己知各构件的尺寸和原动件1的角速所以吗=叫,(%/%)方向
14、与叱相反。度的,求从动件2的速度上。解:因为构件2作平动,所以利用瞬心7是构件1和2的等速重合点,即可求得V2。由于构件1、2组成高副,所以瞬心%在过接触点K处的公法线小上;又由三心定理知瞬心%与勺3、八3共线。因此过打3作%的方向线与一线的交点即为瞬心勺2。v2=412=1勺2%|匕方向向上,如图3-7所示。图3-6图解法求高副机构的角速度图3-7直动从动件凸轮机构利用速度瞬心法对简单机构的速度分析非常简便。但对于包含构件数目较多的机构,由于瞬心数目较多,使得求解困难。需要特别说明的是,速度瞬心法仅限于对机构的速度分析,不便用于加速度分析。3.3用相对运动图解法对机构进行运动分析相对运动图解
15、法(relativekinematicgraphicmethod)也称为矢量方程图解法(vectorgraphicmethod),所依据的是理论力学中的运动合成原理。在对机构进行速度、加速度分析时,根据运动合成原理列出速度、加速度运动矢量方程,按矢量运算作图求解。下面就在机构运动分析中所遇到的两种不同情况对其基本原理和方法加以说明。3.3.1作平面运动的同一构件上两点间的运动分析如图3-8a所示为较锌四杆机构运动简图。已知各构件的尺寸及原动件I以等角速度牡逆时针方向转动,求机构在图示位置时构件2、3的角速度叱、心和角加速度a2、出,以及构件2上点E的速度ve和加速度aE用相对运动图解法进行运动分析时,应沿着机构的运动传递顺序,从与运动已知的原动件相连的杆组开始,以杆组为单位依次进行。首先确定杆组中外接副的运动(往往是已知的),其次确定杆组内接副的运动,然后再确定构件上一般点的运动。(a)校链四杆机构运动简图(b)速度多边形c)加速度多边形图3-8同一构件上两点之间的运动图解分析1.列出运动矢量方程式校链四杆机构仅含有一个Il级杆组BCL且外接副点8、0的运动已知,所以先求内接