《《三角函数模型的简单应用》的教学设计剖析.docx》由会员分享,可在线阅读,更多相关《《三角函数模型的简单应用》的教学设计剖析.docx(14页珍藏版)》请在优知文库上搜索。
1、1.6三角函数模型的简洁应用教学设计一、教学分析三角函数作为描述现实世界中周期现象的一种数学模型,可以用来探讨很多问题,在刻画周期变更规律、预料其将来等方面都发挥着特别重要的作用.三角函数模型的简洁应用的设置目的,在于加强用三角函数模型刻画周期变更现象的学习.本节教材通过4个例题,按部就班地从四个层次来介绍三角函数模型的应用,在素材的选择上留意了广泛性、真实性和新颖性,同时又关注到三角函数性质(特别是周期性)的应用.通过引导学生解决有确定综合性和思索水平的问题,培育他们综合应用数学和其他学科的学问解决问题的实力.培育学生的建模、分析问题、数形结合、抽象概括等实力.由于实际问题常常涉与一些困难数
2、据,因此要激励学生利用计算机或计算器处理数据,包括建立有关数据的散点图,依据散点图进行函数拟合等.二、教学目标1、学问与技能:驾驭三角函数模型应用基本步骤:(1)依据图象建立解析式;(2)依据解析式作出图象;(3)将实际问题抽象为与三角函数有关的简洁函数模型.2、过程与方法:选择合理三角函数模型解决实际问题,留意在困难的背景中抽取基本的数学关系,还要调动相关学科学问来帮助理解问题。切身感受数学建模的全过程,体验数学在解决实际问题中的价值和作用与数学和日常生活和其它学科的联系。3、情态与价值:培育学生数学应用意识;提高学生利用信息技术处理一些实际计算的实力O三、教学重点与难点教学重点:分析、整理
3、、利用信息,从实际问题中抽取基本的数学关系来建立三角函数模型,用三角函数模型解决一些具有周期变更规律的实际问题.教学难点:将某些实际问题抽象为三角函数的模型,并调动相关学科的学问来解决问题.四、教学过程:三角函数模型的简洁应用一、导入新课思路L(问题导入)既然大到宇宙天体的运动,小到质点的运动以与现实世界中具有周期性变更的现象无处不在,则原委怎样用三角函数解决这些具有周期性变更的问题?它原委能发挥哪些作用呢?由此绽开新课.思路2.我们已经学习了三角函数的概念、图象与性质,特别探讨了三角函数的周期性.在现实生活中,假如某种变更着的现象具有周期性,则是否可以借助三角函数来描述呢?回忆必修1第三章其
4、次节“函数模型与其应用”,面临一个实际问题,应当如何选择恰当的函数模型来刻画它呢?以下通过几个具体例子,来探讨这种三角函数模型的简洁应用.二、推动新课、新知探究、提出问题回忆从前所学,指数函数、对数函数以与寻函数的模型都是常用来描述现实世界中的哪些规律的数学模型是什么,建立数学模型的方法是什么上述的数学模型是怎样建立的怎样处理搜集到的数据活动:师生互动,唤起回忆,充分复习前面学习过的建立数学模型的方法与过程.对课前已经做好复习的学生赐予表扬,并激励他们类比以前所学学问方法,接着探究新的数学模型.对还没有进入状态的学生,老师要帮助回忆并快速激起相应的学问方法.在老师的引导下,学生能够较好地回忆起
5、解决实际问题的基本过程是:收集数据f画散点图f选择函数模型f求解函数模型f检验f用函数模型说明实际问题.这点很重要,学生只要有了这个认知基础,本节的简洁应用便可迎刃而解.新课标下的教学要求,不是老师给学生解决问题或带领学生解决问题,而是老师引领学生逐步登高,在合作探究中自己解决问题,探求新知.探讨结果:描述现实世界中不同增长规律的函数模型.简洁地说,数学模型就是把实际问题用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题时,所得出的关于实际问题的数学描述.数学模型的方法,是把实际问题加以抽象概括,建立相应的数学模型,利用这些模型来探讨实际问题的一般数学方法.解决问题的一般程序是:1审题
6、:逐字逐句的阅读题意,审清楚题目条件、要求、理解数学关系;20建模:分析题目变更趋势,选择适当函数模型;30求解:对所建立的数学模型进行分析探讨得到数学结论;4还原:把数学结论还原为实际问题的解答.画出散点图,分析它的变更趋势,确定合适的函数模型.三、应用示例例1如图1,某地一天从614时的温度变更曲线近似满足函数(3小).图1(1)求这一天的最大温差;(2)写出这段曲线的函数解析式.活动:这道例题是2023年全国卷的一道高考题,探究时老师与学生一起探讨.本例是探讨温度随时间呈周期性变更的问题.老师可引导学生思索,本例给出模型了吗?给出的模型函数是什么?要解决的问题是什么?怎样解决?然后完全放
7、给学生自己探讨解决.题目给出了某个时间段的温度变更曲线这个模型.其中第小题事实上就是求函数图象的解析式,然后再求函数的最值差.老师应引导学生视察思索:“求这一天的最大温差”实际指的是“求6是到14时这段时间的最大温差”,可依据前面所学的三角函数图象干脆写出而不必再求解析式,让学生体会不同的函数模型在解决具体问题时的不同作用.第(2)小题只要用待定系数法求出解析式中的未知参数,即可确定其解析式.其中求是利用半周期(14-6),通过建立方程得解.解:(1)由图可知,这段时间的最大温差是20.(2)从图中可以看出,从614时的图象是函数(3Cb)的半个周期的图象,工(30-10)=IOL(30+10
8、)=20.22:-=14-6,2.3=E.将610代入上式,解得6二出.84综上,所求解析式为10(加)+206,14.84点评:本例中所给出的一段图象事实上只取6-14即可,这恰好是半个周期,提示学生留意抓关键.本例所求出的函数模型只能近似刻画这天某个时段的温度变更状况,因此应当特别留意自变量的变更范围,这点往往被学生忽视掉.(互动探究)图5表示的是电流I与时间t的函数关系()(0I生)在一个周期内的图象.2(1)依据图象写出()的解析式;(2)为了使(3)中的t在随意一段-LS的时间内电流I能同时取得100最大值和最小值,则正整数的最小值为多少解:(1)由图知300,第一个零点为(-,0)
9、,其次个零点为(-L,0),300150:()+6=0_+=.解得=100,=-,300(1003001503与.3(2)依题意有T-,BP-,Z,200兀.故3629.100100例2做出函数的图象并视察其周期例3如图2,设地球表面某地正午太阳高度角为0,3为此时太阳直射纬度,力为该地的纬度值,则这三个量之间的关系是0二9()。-I.当地夏半年6取正值,冬半年3取负值.假如在北京地区(纬度数约为北纬40)的一幢高为h。的楼房北面盖一新楼,要使新楼一层正午的太阳全年不被前面的楼房遮挡,两楼的距离不应小于多少活动:如图2本例所用地理学问、物理学问较多,综合性比较强,需调动相关学科的学问来帮助理解
10、问题,这是本节的一个难点.在探讨时要让学生充分熟悉实际背景,理解各个量的含义以与它们之间的数量关系.首先由题意要知道太阳高度角的定义:设地球表面某地纬度值为小,正午太阳高度角为,此时太阳直射纬度为,则这三个量之间的关系是=90o3I.当地夏半年3取正值,冬半年3取负值.依据地理学问,能够被太阳直射到的地区为南、北回来线之间的地带,图形如图3,由画图易知太阳高度角、楼高h0与此时楼房在地面的投影长h之间有如下关系:h0.由地理学问知,在北京地区,太阳直射北回来线时物体的影子最短,直射南回来线时物体的影子最长.因此,为了使新楼一层正午的太阳全年不被遮挡,应当考虑太阳直射南回来线时的状况.解:如图3
11、、B、C分别为太阳直射北回来线、赤道、南回来线时楼顶在地面上的投影点.要使新楼一层正午的太阳全年不被前面的楼房遮挡,应取太阳直射南回来线的状况考虑,此时的太阳直射纬度一2326.依题意两楼的间距应不小于.依据太阳高度角的定义,有NC=90。-|40-(-2326)=26o34,所以=_二02.OOOh0,tanCtan26o34即在盖楼时,为使后楼不被前楼遮挡,要留出相当于楼高两倍的间距.点评:本例是探讨楼高与楼在地面的投影长的关系问题,是将实际问题干脆抽象为与三角函数有关的简洁函数模型,然后依据所得的函数模型解决问题.要干脆依据图2来建立函数模型,学生会有确定困难,而解决这一困难的关键是联系
12、相关学问,画出图3,然后由图形建立函数模型,问题得以求解.这道题的结论有确定的实际应用价值.教学中,老师可以在这道题的基础上再提出一些问题,如下例的变式训练,激发学生进一步探究.变式训练某市的纬度是北纬23,小王想在某住宅小区买房,该小区的楼高7层,每层3米,楼与楼之间相距15米.要使所买楼层在一年四季正午太阳不被前面的楼房遮挡,他应选择哪几层的房?图4解:如图4,由例3知,北楼被南楼遮挡的高度为15900-(23+2326,)=154334,比14.26,由于每层楼高为3米,依据以上数据,所以他应选3层以上.例4货船进出港时间问题:海水受日月的引力,在确定的时候发生涨落的现象叫潮.一般地,早
13、潮叫潮,晚潮叫汐.在通常状况下,船在涨潮时驶进航道,靠近码头;卸货后,在落潮时返回海洋.下面是某港口在某季节每天的时间与水深关系表:时刻0:003:006:009:0012:015:018:021:024:000000水深/米5.07.55.02.55.07.55.02.55.0(1)选用一个函数来近似描述这个港口的水深与时间的函数关系,给出整点时的水深的近似数值(精确到0.001).(2)一条货船的吃水深度(船底与水面的距离)为4米,平安条例规定至少要有1.5米的平安间隙(船底与洋底的距离),该船何时能进入港口在港口能呆多久(3)若某船的吃水深度为4米,平安间隙为1.5米,该船在2:00起先
14、卸货,吃水深度以每小时0.3米的速度削减,则该船在什么时间必需停止卸货,将船驶向较深的水域活动:引导学生视察上述问题表格中的数据,会发觉什么规律比如重复出现的几个数据.并进一步引导学生作出散点图.让学生自己完成散点图,提示学生留意细致精确视察散点图,如图6.老师引导学生依据散点的位置排列,思索可以用怎样的函数模型来刻画其中的规律.依据散点图中的最高点、最低点和平衡点,学生很简洁确定选择三角函数模型.港口的水深与时间的关系可以用形如()的函数来刻画.其中X是时间是水深,我们可以依据数据确定相应的A,的值即可.这时留意引导学生与“五点法”相联系.要求学生独立操作完成,老师指导点拨,并订正可能出现的
15、错误,直至无误地求出解析式,进而依据所得的函数模型,求出整点时的水深.图6依据学生所求得的函数模型,指导学生利用计算器进行计算求解.留意引导学生正确理解题意,一天中有两个时间段可以进港.这时点拨学生思索:你所求出的进港时间是否符合时间状况?假如不符合,应怎样修改?让学生养成检验的良好习惯.在本例中,应保持港口的水深不小于船的平安水深,则如何刻画船的平安水深呢?引导学生思索,怎样把此问题翻译成函数模型.求货船停止卸货,将船驶向深水域的含义又是什么老师引导学生将实际问题的意义转化为数学说明,同时提示学生留意货船的平安水深、港口的水深同时在变,停止卸货的时间应当在平安水深接近于港口水深的时候.进一步引导学生思索:依据问题的实际意义,货船的平安水深正好等于港口的水深时停止卸货行吗?为什么?正确结论是什么?可让学生思索、探讨后再由老师组织学生进行评价.通过探讨或争论,最终得出一样结论:在货船的平安水深正好等于港口的水深时停止卸货将船驶向较深水域是不行的,