《机器人的组成结构.ppt》由会员分享,可在线阅读,更多相关《机器人的组成结构.ppt(52页珍藏版)》请在优知文库上搜索。
1、组成组成 2.1 机器人系统的组成 如图21所示,机器人由机械部分、传感部分、控制部分三大部分组成这三大部分可分成驱动系统、机械结构系统、感受系统、机器人一环境交互系统、人机交互系统、控制系统六个子系统 驱动系统 要使机器人运行起来,需给各个关节即每个运动自由度安置传动装置,这就是驱动系统 感受系统 它由内部传感器模块和外部传感器模块组成,获取内部和外部环境状态中有意义的信息智能传感器的使用提高了机器人的机动性、适应性和智能化的水准人类的感受系统对感知外部世界信息是极其灵巧的,然而,对于一些特殊的信息,传感器比人类的感受系统更有效 机器人一环境交互系统机器人一环境交互系统是实现机器人与外部环境
2、中的设备相互联系和协调的系统机器人与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等 人一机交互系统 人一机交互系统是人与机器人进行联系和参与机器人控制的装置 :指令给定装置和信息显示装置 控制系统 控制系统的任务是根据机器人的作业指令程序以及从传感器反馈回来的信号,支配机器人的执行机构去完成规定的运动和功能如果机器人不具备信息反馈特征,则为开环控制系统;具备信息反馈特征,则为闭环控制系统根据控制原理可分为程序控制系统,适应性控制系统和人工智能控制系统根据控制运动的形式可分为点位控制和连续轨迹控制 关节(关节(Joint):即运动副,允许机器人手臂各零件之间发生相:即运动副,允
3、许机器人手臂各零件之间发生相对运动的机构。对运动的机构。连杆连杆(Link):):机器人手臂上机器人手臂上被相邻两关节分开的部分。被相邻两关节分开的部分。自由度(自由度(Degree of freedom) :或者称坐标轴数,是指描述物:或者称坐标轴数,是指描述物体运动所需要的独立坐标数。手指的开、合,以及手指关节的自体运动所需要的独立坐标数。手指的开、合,以及手指关节的自由度一般不包括在内。由度一般不包括在内。刚度(刚度(Stiffness):):机身或臂部在外力作用下抵抗变形的能力机身或臂部在外力作用下抵抗变形的能力。它是用外力和在外力作用方向上的变形量(位移)之比来度量它是用外力和在外力
4、作用方向上的变形量(位移)之比来度量。定位精度(定位精度(Positioning accuracy):):指指机器人末端参考点实际到达的位置与所机器人末端参考点实际到达的位置与所需要到达的理想位置之间的差距。需要到达的理想位置之间的差距。重复性(重复性(Repeatability)或重复精度:或重复精度: 在相同的位置指令下,机器人连续重在相同的位置指令下,机器人连续重复若干次其位置的分散情况。它是衡复若干次其位置的分散情况。它是衡量一列误差值的密集程度,即重复度。量一列误差值的密集程度,即重复度。oo工作空间(工作空间(Working space):机器人机器人手腕参考点或末端操作器安装点(
5、不手腕参考点或末端操作器安装点(不包括末端操作器)所能到达的所有空包括末端操作器)所能到达的所有空间区域,一般不包括末端操作器本身间区域,一般不包括末端操作器本身所能到达的区域。所能到达的区域。2.2工业机器人的机械结构 工业机器人的机械本体类似于具备上肢机能的机械手 ,由手部、腕部、臂、机身(有的包括行走机构)组成。 2.2.12.2.1机械手的操作动作机械手的操作动作 机械手的动作形态是由三种不同的单动作旋转、回转、伸缩组合而成的。 旋转和回转是指运动机构产生相对运动。旋转是转动部件的轴线和转动轴同轴;回转是转动部件的轴线与转动轴不同轴。 伸缩是指运动机构产生直线运动。 2.2.22.2.
6、2机械手的坐标形式和自由度机械手的坐标形式和自由度 (1)根据单元动作组合方式的不同,机械手的动作形态一般归纳为以下四种坐标类型:直角坐标型(图722);圆柱坐标型(图723);极坐标型(图724);多关节型(图725)。 直角坐标型机械手可以在三个互相垂直的方向上作直线伸缩运动,这类机械手各个方向的运动是独立的,计算和控制比较方便,但占地面积大,限于特定的应用场合 圆柱坐标型机械手有一个围绕基座轴的旋转运动和两个在相互垂直方向上的直线伸缩运动。它适用于采用油压(或气压)驱动机构,在操作对象位于机器人四周的情况下,操作最为方便。 极坐标型机械手的动作形态包括围绕基座轴的旋转,一个回转和一个直线
7、伸缩运动,其特点类似于圆柱型机械手。 多关节型机械手最接近于人臂的构造。它主要由多个回转或旋转关节所组成,一般都采用电机驱动机构。运用不同的关节连接方式,可以完成各种复杂的操作。由于具有占地面积小,动作范围大,空间移动速度快而灵活等特点,多关节型机械手在各种智能机器人中被广为采用。SCARA机器人 关节式机器人机器人机器人PUMA一262机器人机构 图21是PUMA系列一种较小的机器人PUMA一262机器人机构(操作机)的外形直观图。它有一个立柱,可以垂直回转,称作腰关节,也称1轴。有大臂、小臂,它们的回转轴称作肩关节(2轴)和肘关节(3轴)。这3个轴和杆,构成了该机器人的位置机构(又称主关节
8、轴组),即由他们的几何参数(杆长和偏距)和运动参数(关节轴的转角)决定手腕(参考点)的空间活动范围(工作空间)。手腕具有3个互相垂直的回转轴(4、5、6轴),它们是姿态机构(又称副关节轴组),即它们的转角确定着工具(图中未画)的空间姿态。 PUMA262型机器人具有六个自由度,可以进行复杂空间曲面的弧焊作业 6个关节轴由6个独立的电机驱动,由图22可以看出,电机1通过两对齿轮传动带动立柱回转;电机2通过联轴器、一对圆锥齿轮和一对圆柱齿轮带动齿轮Z,齿轮Z绕与立柱固联的齿轮Z转动,于是形成了大臂相对于立柱的回转运动;电机3通过两个联轴器和一对圆锥齿轮、两对圆柱齿轮(Z固联于小臂上)驱动小臂相对于
9、大臂回转;电机4先通过一对圆柱齿轮、两个联轴器和另一对圆柱齿轮( Z固联于手腕的套筒上)驱动手腕相对于小臂回转;电机5通过联轴器、一对圆柱齿轮、一对圆锥齿轮(Z联于手腕的球壳上)驱动手腕相对于小臂(亦即相对于手腕的套筒)摆动( );电机6通过联轴器、两对圆锥齿轮和一对圆柱齿轮驱动机器人的机械接口(法兰盘)相对于手腕的球壳回转() 5 可以看出,6个电机通过一系列的联轴器和齿轮副,形成了6条传动链,得到了6个转动自由度,从而形成了一定的工作空间并使工具各式各样的运动姿势 这里所使用的联轴器,都是具有挠性的螺旋形联轴器(如图23);齿轮传动都具有消隙机构,从而保证了正反转时的回差在一定的精度范围内
10、。由于先进的制造技术,虽然使用了一般的多级齿轮传动,但仍具有很高的运动和定位精度 (2)机器人机器人直角坐标式直角坐标式圆柱坐标式圆柱坐标式123456123456多关节型机械手1. 滑槽杠杆式手部滑槽杠杆式手部2.齿轮齿条式手部齿轮齿条式手部3.滑块杠杆式手部滑块杠杆式手部4.斜斜楔楔杠杠杆杆式式5.移动型连杆式手部移动型连杆式手部6.齿轮齿条式手部齿轮齿条式手部7.内涨斜块式手部内涨斜块式手部8.连杆杠杆式手部连杆杠杆式手部手指类型:手指类型:u电磁式吸盘电磁式吸盘u气吸式吸盘气吸式吸盘常见的另两种手部常见的另两种手部: :滚滚动动轴轴承承座座圈圈钢钢板板齿齿轮轮多多孔孔钢钢板板双吸头吸盘
11、双吸头吸盘多吸头吸盘多吸头吸盘吸取瓦楞板吸取瓦楞板双吸头吸盘双吸头吸盘双吸头架式吸盘双吸头架式吸盘多吸头板式吸盘多吸头板式吸盘其它手部其它手部:救救援援机机器器人人3. 步行式步行式4.其它移动方式其它移动方式军军用用昆昆虫虫机机器器人人爬缆索机器人爬缆索机器人水下水下6000米无缆自治机器人米无缆自治机器人蛇形机器人蛇形机器人2.4机器人的驱动系统2.4.1关节直接驱动方式 直接驱动方式是驱动器的输出轴和机器人手臂的关节轴直接相连间接驱动方式是驱动器经过减速器或钢丝绳、皮带、平行连杆等装置后与关节轴相连 (1)关节间接驱动方式的缺点 大部分机器人的关节是间接驱动这种间接驱动,通常其驱动器的输
12、出力矩大大小于驱动关节所需要的力矩,所以必须使用减速器另外,由于手臂通常采用悬臂梁结构,所以多自由度机器人关节上安装减速器会使手臂根部关节驱动器的负荷增大 目前中小型机器人一般采用普通的直流伺服电机、交流伺服电机或步进电机作为机器人的执行电机由于电机速度较高,所以需配以大速比减速装置,进行间接传动但是,间接驱动带来了机械传动中不可避免的误差,引起冲击振动,影响机器人系统的可靠性,并且增加关节重量和尺寸 (2)关节直接驱动方式 直接驱动机器人也叫作DD机器人(Direct drive robot),简称DDRDD机器人一般指驱动电机通过机械接口直接与关节连接 DD机器人的特点是驱动电机和关节之间
13、没有速度和转矩的转换 DD机器人与间接驱动机器人相比,有如下优点:机械传动精度高振动小,结构刚度好机械传动损耗小结构紧凑,可靠性高 电机峰值转矩大,电气时间常数小,短时间内可以产生很大转矩,响应速度快,调速范围宽控制性能较好 日本、美国等工业发达国家已经开发出性能优异的DD机器人美国Adept公司研制出带有视觉功能的四自由度平面关节型DD机器人日本大日机工公司研制成功了五自由度关节型DD一600V机器人其性能指标为:最大工作范围12 m,可搬重量5 kg,最大运动速度82 ms,重复定位精度005 mm DD机器人目前主要存在的问题 载荷变化、耦合转矩及非线性转矩对驱动及控制影响显著,使控制系
14、统设计困难和复 杂对位置、速度的传感元件提出了相当高的要求需开发小型实用的DD电机 电机成本高 2.4.2 驱动元件 (1) 液(气)压驱动 液(气)压缸 液(气)压马达 (2)步进电动机驱动 在小的机器人上,有时也用步进电机作为主驱动电机。可以用编码器或电位器提供精确的位置反馈,所以步进电机也可用于闭环控制 步进电机是通过脉冲电流实现步进的,因此每给一个脉冲转子便转动一个步距。在精度要求不高的情况下,没有必要加入位置反馈 (3)直流电动机驱动 直流电动机与步进电动机是工业机器人中应用最广泛的两种电动机,但两者的动作方式有本质上的区别。直流电动机是连续旋转,运动连续且平滑,且本身没有位置控制能
15、力 要实现精确的位置控制,必须加入某种形式的位置反馈,构成闭环伺服系统;有时,机器人的运动还有速度要求,所以还要加入速度反馈。一般直流电动机和位置反馈、速度反馈形成一个整体,即通常所说的直流伺服电机。由于采用闭环伺服控制,所以能实现平滑的控制和产生大的力矩 当今大部分机器人都采用直流伺服电机驱动机器人的各个关节,但它们也有一些缺点,如转速不能太高 近年来,新发展起来的无刷直(交)流伺服电动机克服了上述缺点,并保留了直流伺服电动机的优点,因此无刷电动机逐渐取代了直流伺服电动机 (4)无刷直(交)流伺服电动机 原理 由图可见,转子是由永久磁铁组成,定子有绕组线圈,可以通过机壳把绕组热量散发出去,因
16、此,同功率的无刷电动机体积质量比较直流伺服电动机小得多,或者说同体积电动机,无刷电动机功率远大于直流电动机。像直流电动机一样,无刷电动机也需要有绕组电流的换向功能,但不是由机械式换向器实现,由于组接到外部的驱动电路上,驱动电路可以根据转子位置信息利用电子开关来改变流向电枢的电流方向 无刷电动机分类: 梯形波电动机和正弦波电动机。前者也称为直流无刷电动机(DC brushless) 后者称为交流无刷电动机或交流伺服电动机 直流无刷电动机(梯形波电机):从无刷电动机原理可以知道,它的绕组数仅23个(2或3相),这数目远小于直流有刷伺服电动机定子绕组数目。因此如何减小无刷电动机工作时转矩波动,是一个关键性问题。通过无刷电动机定子绕组的电流幅值越大,产生的转矩越大。为减小转矩波动,限止电流幅值,而呈平顶状,如图63l所示。由梯形波代替正弦波来驱动电动机,简化了驱动电路,但为进一步减小转矩波动,这种电动机的控制系统要有速度负反馈环,这样通过速度负反馈的作用使转速平稳 正弦波电动机(交流无刷伺服电动机):顾名思义,它是由正弦波电流驱动的。对三相情况,电流相位差120。,而且这三相电流是随转子位置不