列联表独立性分析案例.ppt

上传人:王** 文档编号:178039 上传时间:2023-03-21 格式:PPT 页数:13 大小:940.50KB
下载 相关 举报
列联表独立性分析案例.ppt_第1页
第1页 / 共13页
列联表独立性分析案例.ppt_第2页
第2页 / 共13页
列联表独立性分析案例.ppt_第3页
第3页 / 共13页
列联表独立性分析案例.ppt_第4页
第4页 / 共13页
列联表独立性分析案例.ppt_第5页
第5页 / 共13页
列联表独立性分析案例.ppt_第6页
第6页 / 共13页
列联表独立性分析案例.ppt_第7页
第7页 / 共13页
列联表独立性分析案例.ppt_第8页
第8页 / 共13页
列联表独立性分析案例.ppt_第9页
第9页 / 共13页
列联表独立性分析案例.ppt_第10页
第10页 / 共13页
亲,该文档总共13页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《列联表独立性分析案例.ppt》由会员分享,可在线阅读,更多相关《列联表独立性分析案例.ppt(13页珍藏版)》请在优知文库上搜索。

1、2023-3-21郑平正 制作列联表独立性分列联表独立性分析案例析案例怎样描述实际观测值与估计值的差异呢?怎样描述实际观测值与估计值的差异呢?统计学中采用统计学中采用22()abacannnkabacnnn ndbnbanndbnbanb2)(ncandcnncandcnc2)(ndbndcnndbndcnd2)(22()()()()()n adbckac bd ab cd化简得2( 2 2观观测测值值预预期期值值) )用用卡卡方方统统计计量量: :预预期期值值来来刻刻画画实实际际观观测测值值与与估估计计值值的的差差异异. .即即 独立性检验第一步:第一步:H H0 0: 假设假设吸烟吸烟和和

2、患病患病之间没有关系之间没有关系 通过数据和图表分析,得到通过数据和图表分析,得到结论是:结论是:吸烟与患病有关吸烟与患病有关结论的可靠结论的可靠程度如何?程度如何? 患病患病不患病不患病总计总计吸烟吸烟a ab ba+ba+b不吸烟不吸烟c cd dc+dc+d总计总计a+ca+cb+db+da+b+c+da+b+c+d第二步:列出第二步:列出2 22 2列联表列联表 用用2 2统计量研究统计量研究这类问题的方法这类问题的方法步骤步骤第三步:引入一个随机变量:第三步:引入一个随机变量:卡方统计量卡方统计量第四步:查对临界值表,作出判断。第四步:查对临界值表,作出判断。dcban其中22n a

3、dbckabcdacbdP( 2 2 x0) 0.500.400.250.150.100.050.025 0.010 0.005 0.001x00.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828P( 2 2 x0) 0.500.400.250.150.100.050.025 0.010 0.005 0.001x00.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828828.102 635. 62 706. 22 706. 22 0.1%0.1%把握认为把握认为

4、A A与与B B无关无关1%1%把握为把握为A A与与B B无关无关99.9%99.9%把握认把握认为为A A与与B B有关有关99%99%把握认把握认为为A A与与B B有关有关90%90%把握认把握认为为A A与与B B有关有关10%10%把握认为把握认为A A与与B B无关无关没有充分的依据显示没有充分的依据显示A A与与B B有关有关,但也不能显示,但也不能显示A A与与B B无关无关例如例如 独立性检验通过公式计算通过公式计算患病患病不患病不患病总计总计吸烟吸烟393915155454不吸烟不吸烟212125254646总计总计6060404010010022100 39 25 15

5、 217.30754 46 60 40H H0 0: 吸烟吸烟和和患病患病之间没有关系之间没有关系解解:已知在已知在 成立的情况下,成立的情况下,0H故有故有99%99%的把握认为的把握认为H H0 0不成立,即有不成立,即有99%99%的把的把握认为握认为“患病与吸烟有关系患病与吸烟有关系”。即在即在 成立的情况下,成立的情况下, 大于大于6.6356.635概率非常概率非常小,近似为小,近似为0.0100.0100H2现在的现在的 =7.307=7.307的观测值远大于的观测值远大于6.6356.635,出,出现这样的观测值的概率不超过现这样的观测值的概率不超过0.0100.010。22(

6、6.635)0.010P例例1.1.在在500500人身上试验某种血清预防感冒作用,把他们人身上试验某种血清预防感冒作用,把他们一年中的感冒记录与另外一年中的感冒记录与另外500500名未用血清的人的感冒记名未用血清的人的感冒记录作比较,结果如表所示。问:该种血清能否起到预防录作比较,结果如表所示。问:该种血清能否起到预防感冒的作用?感冒的作用?未感冒未感冒感冒感冒合计合计使用血清使用血清258242500未使用血清未使用血清216284500合计合计4745261000解:设解:设H0:感冒与是否使用该血清没有关系。:感冒与是否使用该血清没有关系。075.750050052647421624

7、2284258100022 因当因当H0成立时,成立时,26.635的概率约为的概率约为0.01,故有,故有99%的把握认的把握认为该血清能起到预防感冒的作用。为该血清能起到预防感冒的作用。P( 2 2 x0) 0.500.400.250.150.100.050.025 0.010 0.005 0.001x00.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828P(x0)0.500.400.250.150.100.050.025 0.010 0.005 0.001x00.455 0.708 1.323 2.072 2.706 3

8、.841 5.024 6.635 7.879 10.828有效有效无效无效合计合计口服口服585840409898注射注射646431319595合计合计1221227171193193解:设解:设H0:药的效果与给药方式没有关系。:药的效果与给药方式没有关系。3896.19598711224064315819322 因当因当H0成立时,成立时,21.3896的概率大于的概率大于15%,故不能否定假设,故不能否定假设H0,即不能作出药的效果与给药方式有关的结论。,即不能作出药的效果与给药方式有关的结论。2.072例例2 2:为研究不同的给药方式(口服与注射)和药的效:为研究不同的给药方式(口服

9、与注射)和药的效果(有效与无效)是否有关,进行了相应的抽样调查,果(有效与无效)是否有关,进行了相应的抽样调查,调查的结果列在表中,根据所选择的调查的结果列在表中,根据所选择的193193个病人的数个病人的数据,能否作出药的效果和给药方式有关的结论?据,能否作出药的效果和给药方式有关的结论?P(x0)0.500.400.250.150.100.050.025 0.010 0.005 0.001x00.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828例例3:气管炎是一种常见的呼吸道疾病,医药研究人:气管炎是一种常见的呼吸道疾病,

10、医药研究人员对两种中草药治疗慢性气管炎的疗效进行对比,员对两种中草药治疗慢性气管炎的疗效进行对比,所得数据如表所示,问:它们的疗效有无差异?所得数据如表所示,问:它们的疗效有无差异?有效有效无效无效合计合计复方江剪刀草复方江剪刀草18461245胆黄片胆黄片919100合计合计27570345解:设解:设H0:两种中草药的治疗效果没有差异。:两种中草药的治疗效果没有差异。098.11100245702759161918434522 因当因当H0成立时,成立时,210.828的概率为的概率为0.001,故有,故有99.9%的把握认的把握认为,两种药物的疗效有差异。为,两种药物的疗效有差异。P( 2 2 x0) 0.500.400.250.150.100.050.025 0.010 0.005 0.001x00.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 经济/贸易/财会 > 稽查与征管/审计

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!