专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx

上传人:王** 文档编号:1664123 上传时间:2024-11-25 格式:DOCX 页数:24 大小:152.42KB
下载 相关 举报
专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx_第1页
第1页 / 共24页
专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx_第2页
第2页 / 共24页
专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx_第3页
第3页 / 共24页
专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx_第4页
第4页 / 共24页
专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx_第5页
第5页 / 共24页
专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx_第6页
第6页 / 共24页
专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx_第7页
第7页 / 共24页
专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx_第8页
第8页 / 共24页
专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx_第9页
第9页 / 共24页
专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx_第10页
第10页 / 共24页
亲,该文档总共24页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx》由会员分享,可在线阅读,更多相关《专题05 圆和圆的位置关系4种常见压轴题型全攻略(解析版).docx(24页珍藏版)》请在优知文库上搜索。

1、专题05圆和圆的位I1.关系4种常见压轴题型全攻略【考点导航】目录【典型例JRn1【考点一由半径和圆心跖的关系米的B1.相交的计算】1【考点二两圆相切时求半径和10心距的相关计算】2【考点三由交点个数求两圆位词关系的计算】2【考点四动点问SS在两圆位盥关系中拓展应用】3【典型例题】【考点一由半径和Bi心距的关系求两B1.相交的计算】【例题1】如果两10的平径分别是3c加和4cm,圆心距为5c/w,那么这两圆的位置关系是(?A相交B.内切C.外离D.外切【详解】试即分析:若两网的半径分别为R和r.HRr网心即为d:外声,则dK+八外切,则d=K-r:相交.则K-zdA+心内切,则d=K-r:内含

2、.则dK-r.(M-35Oj.日。2的半径分别为4和6.网心距。;。?=8,则由。1与GJOz的位置关系是()A.内切B.相交C.外切D.外离【答案】B【详解】试时分析:HO1.002的口径分别为4和6,圆心距Oq产2,301、Mh的半径之和为5,只差为1,而1.OOz=22O,O.,所以两圆相交答案相交【考点二两图相切时求半径和B1.心距的相关计算】IMI2已如UOi与EOZ外切,使01的半径R=5cm,BO?的半径r=1.cm,则EoI与BCh的BI心距JSR”:两限外切Od=R+r;两圆相交=R-rVdVR+r:两圆内切OdHR-r:两回内含OdVRf【交式2】已知.一元二次方程产-8/

3、15=0的两根分别是BO1.和QOz的半径当00】和质。2相切时,O1O2的长度是()A.2B.8C.2或8D.2Oi8【答案】C【详解】试的分析:HSOu三。2的半径分别是方程-8x+15=0的两极,解得IaO1、8,的半径分别是3和5, Ia当两IS外切时,留心距O16=3+5=8:当两13内切时.网心距015=5-2=2.故选C.考点:圆与If1.I的位词关系;根与系数的关系;分类讨论.【变式3】己知圆A和圆相切,两If1.I的圆心即为8cm,BiIA的半径为3s则即8的半径是.A.5cmB.I1.cmC.3cmD-5cm或I1.cm【答案】D【详解】若外切,则SB的半径是83=5,若内

4、切.则21B的半径是8+3=I1.故选D.【考点三由交点个数求两B1.位*关系的计算】【例JB3】已知半径分别是3和5的两个圈没有公共点,那么这两个圆的硼心距d的取值范树是()A.J8B.d2C.08或0dv2【答案】。【分析】没行公共点的两个即的位置关系,应该是内含和外离,外离,则dRr;内含,W1.dRr,即d8.故选O.【交式1已知Oa的半径彳6,Oq的半径为4,留心距=3.如果。与。自有交点,加么4的取值范围是)A.,3B.r9C.3n9D.3n9【答案】D【分析】根据圆与院的位置关系即可得.【详解】由惬意得,Oa的国心Q在Oa的内部如果oijoq有交点,则行如图所示的两个临界位置因此

5、有忙i解,叩忙M1.r.向心距为由外离,则dK+X*:外切.则d=K+,:相交,则RrdR+r;内切,则d=K-r:内含则dRIh图可得以OP为半径的mo与3A的位置关系不可能是内含故选D.考点:圆与圆的位置关系点评:本时处于塔础应用题,只需学生熟练掌握圆与欧的位巴关系,即可完成.【交式1】如图,半圆。的食径AB=4,与半圆0内切的动阀01与AB切于点M设阳,的半径为V,AM=X,则y关于X的函数关系式是()AJ=-.V1-XB.y=.x:+XC.货=-忠.D.=二4二泯4叫7【答案】A【详解】试咫分析:连接6MOOi,可解到百角三:角形06M,依83意可知Bo的半径为2,则OOM-.0M=2

6、-X.O1M=y.在Rt6M中,由勾股定理犯(2y)2(2-.r)2解得4考点:根据实际问遨列:次函数关系式.【变式2】如图,矩形ABCD中,AB=4,BC=6,以A、D为腹心,半径分别为2和1画圆,E、F分别是HA、KD上的一动点,P是BC上的一动点,则PE+PF的最小值是()A.5B.6C.7D.8【答案】C分析以BC为轴作矩形ABCD的对称图形ABCh以及对称圆D,连接AD咬BC于P.交BA、RO,TE、F1.连接PD.交2DF.EF就是PE+PF最小值:根据勾股定理求得Ah的长即可求得PE+PF戢小值.【详解】解:如图,以BC为轴作矩形AB8的对称图形ABCh以及对称圆b.连接Ab交B

7、CFP.则EF就是PEPFJft小值;(3矩形ABCD中,AB=4,BC三6,IaA的半径为2,阴D的半径为1,EA*D=BC=6.AA=2AB=8.AE=2,DT,=DF三1.C8AD,三10,EF,=1O21=7t3PE+PF=Pr+PE=EF=7.故选C.【点睹】本时考农J轴时称-最短路线问题,勾股定理的应用等,作出对琳图形是解答本期的关键.【交式3】如图,已知历C的半径为3.园外一点。满足OC=5,点。为团C上一动点,经过点。的宜线/上有两点A、B,且OA=O8.Z4PB=90,/不羟过点C,则A8的最小值为一.t答案】4【详解】分析:连接。尸、OC.PC.如图所示,则有OAOC-PC

8、.3。、尸、C点共线时,OP=OC-PCi由w*9可知点P在以A为直径的例上,则M与tac相切时.OP取得最小值.据此求解即可.详耨:连接OP、OC.PC.如图所示,则有O*OCPC当。、P、C二践共线时,OP=OCPCmAP=90,CAM)B,(3点P在以A8为直径的网匕HaO与I3C相切时,OP1.M得最小值.则。产=OC-CP=2.(HA8=2。产=4.点M:本题考查了13与B1.的位置关系,两点之间我段最短判断出当(30与取?相切时,0/取褥最小值是解答本阳的关键.【过关检费】一、单选题1.已知点A(4.0),8(0,3),如果财的半径为2,2的半径为7,那么0478的位置关系()A.

9、内切B,外切C.内含D.外离【答案】A【分析】求出A85.根据同心距,半径之差.即可判断.【详解】解:t三.*,.B,O,3.t214=42+32=5SaA与M的半径分别为:2与7.(3半径差为:7-2=5.(3这两圆的位置关系是:内切.故选:A.点斶此题考查了is与B1.的位置关系.注意掌握两Ia位置关系与Ia心距a两B1.半径用;的数量关系间的联系是好此遨的关雄.2.如果费力和IzQ内含,阳心距OQ14,正伪的半径长是6.那么26的半径r的取值苞围是()A.0r2B.2r10D.0r10【答案】D【分析】根据(BQ和BQ内含,分,6,6两种情况付论,根掘半径差大于圆心距列出不等式.解不等式求解即可【详解】解:115和Mh内含,网心距OQ产%Mb的半径长是6.么(36的半径为r

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 中学教育 > 高考

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!