《《指数函数与对数函数》大单元教学设计.docx》由会员分享,可在线阅读,更多相关《《指数函数与对数函数》大单元教学设计.docx(10页珍藏版)》请在优知文库上搜索。
1、指数函数与对数函数大单元教学设计1.单元内容指数函数和对数函数是两类重要的基本初等函数。在第三章“函数的概念和性质”中研究函数的般方法的指引下,本章让学生借助研究募函数的经验,学习这两类新的重要的基本初等可数-指数函数和对数函数,认识它们的变化规律,进一步理解函数的概念,并利用这两类函数建立数学模型解决实际问题数及其运算的产生和发展是推动数学发展的重要源泉和动力。数、式、方程、函数等内容的基研!是数及其运算,函数是数及其运算的延伸和发展。对于指数函数,本章首先引导学生经历从整数指数用到有理数指数林再到实数指数帮的拓展过程,建立实数指数案的概念,并研究其运算,为指数函数.y=(aX),且a#1.
2、)的学习奠定基础;然后,教科书通过典型卜富的实际何选,抽象概括出指数函数概念;最后,重点研窕指数函数的图象、性脑和应用.I可样,在建立对数的概念、研究其运算,以及研究指数函数的基础上,研究对数函数的概念、图缴、性质及其应用。2.单元学情:在初中阶段学生已经掌握了正整数指数界的定义及其运算性质,随着新知识学习的新要求,正整数指数事已经不能满足学习的需要了。本章将正整数指数塞的概念与运鸵推广到了实数范围,在对恭概念进步理解的基础上引人辞函数、指数函数、对数手数.学习其相关性痂与应用。通过探究、发现、感悟等形式,让学生体会指数函数与对数示数广泛的实际应用.掌握本章内容,对学生今后的学习、实践将会产生
3、重要的景响.3.单元目标:11解指数函数模型的实际背景,理解有理数指数席的意义,通过具体实例J解实数指数得的意义:2 .理解指数函数的概念和意义厚握f(x)=a*的符号及意义,能借助计算器或计算机画出具体指数函数的图像.探索并理解指数函数的仃关性质(单调性、值域、特别点),通过应用实例的教学.体会指数函数是种重要的函数模型:3 .理解对数的概念及其运兑性质J解对数换底公式及其简单应用,能将一般对数转化为常用对数或臼然对数,了解对数的简化运算的作用;4 .通过具体函数.直观了解对数函数模型所刻画的数量关系.初步理解对数函数的概念.学握f(x)=1.ogax的符号及意义,体会对数函数是一类重要的函
4、数模型;5 .能借助计算器或计尊机画出具体对数函数的图像,探索并了解时数函数的有关性质(单调性、值域、特殊点);4.评价任务:课内:例题及对应的H标检测课外:作业检测5.单元实施,编号单元名称单元主要内容课时I对数函数对数函数I对数函数的图像和性痂1【学习资源】背景性资源:1637年,法国数学家笛卡儿(DeSCartCS,15961650年)开始用符号/表示正整数班,在他的几何学一书中,用才代表aaa,用/代表aaaa分数指数需在十七世纪初也开始出现,最早使用分数指数记号的是荷兰工程师司格文(Stevin).十七世纪末,华里斯开始使用表示分数指数及负数指数事.十八世纪初,英国数学家牛顿(NCW
5、tOn,16421727年)开始使用,表示任意实数指数驿.这样,指数概念就由正整数指数逐步推广到实数指数.对数的创始人是苏格兰数学家纳皮尔(NaPier,1550年7617年他发明了供天文计鸵作参号的对数,并于1614年在爱丁堡出版了*奇妙的对数定律说明书h公布了他的发明。恩格斯把对数的发明与解析几何的创始,微积分的建立并称为17世纪数学的-:大成就.【学法建议】学习流程:指数T指数函数一对数T对数函数T函数的应用(二).重点难点:本堂的教学重点为实数指数塞及其运算,对数及其运算,指数函数和对数函数的概念、图像、性质及其应用.本章的教学难点是抽象、概括指数函数和对数函数的概念和性质.新旧联系:
6、在教学过程中,以研究函数概念与性质的一般方法为指导,借鉴研究密函数的过程与方法,学习指数函数与对数函数,理解这两类函数中蕴含的变化规律:运用函数思想和方法,探索用二分法求方程的近似解;创设尽可能多的情境和机会,逐步培养和提升学生的规察,分析、探究、概括能力,通过建立指数函数模型、对数函数模型解决实际问题,体会指数函数、对数函数在解决实际问题中的作用,从而进一步理解函数模型是描述客观世界中变量关系和规律的也要数学语言和工具.课时教学设计课题第I课时对数函数课型新授课(3豆习课口试卷讲评课口其它课口(一)教学内容分析本节主要内容是对数的概念,对数与指数之间的转化关系,以及一些常用的对数,这是后续学
7、习对数的运算及对数函数的基础。本节内容属对数知识里的基础内容,是为r后面能够更好地理解对数函数而设计的,所以单独考杳本节知识的情况不是很多.(二)学情分析对于学生而言,前面已经学习了指数概念,而对数与指数是可以互相转化的,从这个角度切入,学生的兴趣比较高。但是对数这种形式的数学牛.之前没有接触过,在书写和使用上存在着一定的困难,需要一段时间来适应。(三)学习目标(1.)理解对数的概念,了解对数运算与指数运算的互逆关系,及常用对数和自然对数.(2)掌握指数式和对数式之间的关系,能熟练地进行对数式和指数式的互化.(3)根据对数的定义,归纳总结出时数的3条性质和对数恒等式:(四)教学重、难点重点:对
8、数函数的概念,在此过程中培养学生的数学抽象素养。难点:从不同的问题情境中归纳对数函数的定义域,并掌握对数函数的定义域。(五)教学评活动过程教学环节:新课引入教学内容师生活动设计意图问题1在4.2.1的问题I中,通过指数解运尊,我们能从y=1.1.1.中求出经过4年后B地景区的游客人次为2001年的倍数y.反之,如果要求经过多少年游客人次是2001年的2倍,3倍,4倍,那么该如何解决?教师提出问题,通过分析上述问题其实际上就是从XX2=1.11.3=1.11,K4=1.11,.中分别求出X,即己知底数和零的值,求指数.这是本节要学习的对数。开门见山,通过对上节问题的提问和引伸,提出新问题.从而引
9、出对数的概念。培养和发展逻辑推理和数学运算的核心素养。教学环节,新知探究教学内容师生活动设计意图1.对数(1)指数式与对数式的瓦化及有关概念:根据预习的情况,给出指数对数式互化公式,并强调底数a的取值范围两个对数的引入,直接给出即可通过对对数概念的解析,理解对数与指数的关系,进而理解.III=J二!:围是对数的概念,发展学生数学抽象、数学建模和逻辑推理等核心素养IIQ(2)底数aQ-1。及_|的茕2 .常用对数与自然对数,令互/Q用也)(f-(jyf,a(kN)(B3 .对数的基本性质(I)负数和零没有对数.(2)kg0I=Q(0,且).(3)1.og,0.且1.).思考:为什么零和负数没有时
10、数?1.思考辨析(I)IoguW是Iogn与N的乘积.()(2)(2=-8可化为1.og248)=3.()(3)对数运.算的实质是求某指数.()答案(1.)(2)(3W通过指数对数式的互化给出时数的基本性质,强化指对互化的重:要性。由学生抢答,学生纠错,自主完成在处理两个小问题过程中,检测学生对概念和性质的理解程度教学环节I例题解析教学内容师生活动设计意图gs625=4.由27.S,可得i%28-7.由()m=5.73,可得Iogi5.73-2=m,(4)由1.og;32=-5,可得=32.由IgI()00=3,可得IO5=I(XX).由In10=2.303,可得e2w3=10.I规律方法指数
11、式与对数式瓦化的方法将指数式化为对数式,只需耍将黎作为真数,指数当成对数值,底数不变,写出对数式:将对数式化为指数式,只需将真数作为弊,时数作为指数,底数不变.写出指数式:例2求下列各式中的X的值:(I)IogMX=-Tt(2)1.og,8=6:(3)1.gI00=r,(4)-Inc2=x._2_2解)(I)X=(64)3=(4。3=42=111(2,=8,所以x=(.=86=Q3)61=2=2.(3)10=100=IO2,于是x=2.(4)由一1.ne2=x,得一X=Ine?,即e例1,例2学生抢答例3学生独立思考并板45,教师修正并完善,归纳总通过典例问题的分析,让学生进一步熟悉指数式与对
12、数式的转化。深化对对数概念的理解。*=c2,所以X=2.规律方法:要求对数的值,设对数为某一未知数,将时数式化为指数式,再利用指数杼的运算性质求解。探究问题1.gr,1.你能推出对数恒等式aMa0且0,NX)吗?提示:因为o=N,所以X=IOgjIOgdN代入a,=N可得。=N.2.如何解方程Iog4(1.ogu)=?提示:借助对数的性侦求解,由Ig4(1.g3x)=1.g41得IogAX=IX=3.例3设51.og5(2x-1)=25,则X的值等于()A.IOB.13C.I(X)D.100若1.og5(1.gX)=O,则X的值等于思路探究:利用时数恒等式HogN=N求解:a利用1.og=1.
13、1.ogI=0求解.aa1.g5(2-1)(I)B(2)10(I)由525得=25,所以,r=13,故选B.由IogS(IgX)=O得IgX=1.=1.().通过问题探究进一步理解对数的概念,并推出对数的相关性质,发展学生数学运算和逻辑推理核心素养;归纳总结:1.利用对数性侦求解的2类问题的解法(I)求多费对数式的值解题方法是由内到外,如求IOg“1.og”的值,先求IOg的值,再求IOgJogM:的值.(2)已知多重对数式的值,求变量值,应从外到内求,逐步脱去“1.og”后再求解.1.og11jV2.性质a=N与kgd=Z)的作用1.ogujV(I)=N的作用在于能把任意一个正实数转化为以a
14、为底的指数形式.(2) IOMO=8的作用在于能把以“为底的指数转化为一个实数(3)教学环节:课堂练习三、当堂达标1 .在b=1.oga(1.1.)中,实数卅的取值范围是()A.RB.(0.+o)C.(-oo,I)D.(1,+oo)【答案】D由1.0得心1,故选D.2 .若1.og1.og9)=1,则X=.【答案】3由1.og2(1.ogt9)=1.可知1.og9=2,即2=9,.v=3(x=-3舍去).】IOgQ3 .IOgj3+3=.Iogi2【答案】31.ogj3+3=1+2=3.14 .求卜列各式中的X值:32(1.)1og.27=:(2)1ogzX=一下(3Xr=1.og27;(4)X=IOgjJ6.23【答案】由1.ogr27=1可得/=27,22x=273=(3j)3=32=9.2-Q由1.ogi=一亍可得=2,2T)3=需=坐由*=1.og27,可得27=上,二3=32,.,.x=