大学物理作业.ppt
《大学物理作业.ppt》由会员分享,可在线阅读,更多相关《大学物理作业.ppt(28页珍藏版)》请在优知文库上搜索。
1、5-9 5-9 若电荷均匀地分布在长为若电荷均匀地分布在长为L 的细棒上,求证:的细棒上,求证:(1 1)在棒的延长线上,且离棒中心为)在棒的延长线上,且离棒中心为r处的电场强度为:处的电场强度为:(2 2)在棒的垂直平分上,且离棒中心为)在棒的垂直平分上,且离棒中心为r r处的电场强度为:处的电场强度为:220124QErrL22014QErL证明:证明:(1 1)考虑棒的延长线上距棒中心为)考虑棒的延长线上距棒中心为r的的P点;点;取坐标如右图所示;取坐标如右图所示;在棒上在棒上x处取线元处取线元dx,线元线元dx的带电量的带电量dq为:为:QdqdxL若棒为无限长(即若棒为无限长(即L)
2、,试将结果与无限长均匀带电直线),试将结果与无限长均匀带电直线的电场强度相比较。的电场强度相比较。即,即,的大小的大小dE为:为:dEdE的方向为:的方向为: 沿沿x轴正向;轴正向;204()QdxdEL rx应用电场强度的叠加原理,应用电场强度的叠加原理,得到总场强的大小得到总场强的大小E为:为:EdE22024()LLQdxLrx011422QLrLrL即,即,22014QErL总场强的方向为:总场强的方向为: 沿沿x轴正向。轴正向。dq在在P点的场强点的场强的大小的大小dE为:为:dE2014()dqdErx(2 2)考虑棒的垂直平分线上距棒中心为)考虑棒的垂直平分线上距棒中心为r的的B
3、点;点;在棒上在棒上x处取线元处取线元dx,线元,线元dx的带的带电量电量dq为:为:QdqdxL取坐标如右图所示;取坐标如右图所示;该该dq在在B点产生的场强点产生的场强dE的大小的大小dE为:为:22014dqdErx2204QdxdEL rx即,即,dE的方向:的方向: 如右图所示;如右图所示;将将dE分解为:分解为:sinxdEdEcosydEdE22sinxrx注意到:注意到:22cosrrx222204xQdxxdEL rxrx所以所以222204yQdxrdEL rxrx即,即,223 204()xQxdxdEL rx223 204()yQrdxdEL rxxxEdE2223 2
4、024()LLQxdxLrx0yyEdE2223 2024()LLQrdxLrx220124QrLr积分得:积分得:xyEE iE j所以,所以,B点的电场强度为:点的电场强度为:220124QjrLr当当L时,注意到:时,注意到:QL220/1lim214LQLErrL02r结果与无限长带电直线周围的电场强度分布相同;结果与无限长带电直线周围的电场强度分布相同;这说明,只满足这说明,只满足221rL ,带电长直细棒就可看作为无,带电长直细棒就可看作为无限长带电直线。限长带电直线。 5-10 一半径为R的半球壳,均匀地带有电荷,电荷面密度为 , 求球心处电场强度的大小。 dSdqdR sin2
5、2将半球壳分割为一组平行细圆环,任一个圆环所带电荷元在点O激发的电场强度为解解ixxd41d23220 cosRx sinRr 由于平行细圆环在点O激发的电场强度方向相同,利用几何关系统一积分变量,有ddRRRrxxdqdEcossin2sin2cos4141023023220积分得球心的电场强度为 20004cossin2dE或iidE200042cossinyz和和zx平面,立方体的一个顶点为坐标原点。现将立方体置于电平面,立方体的一个顶点为坐标原点。现将立方体置于电场强度为场强度为12()EEkx iE j的非均匀电场中,求立方体各表的非均匀电场中,求立方体各表面的电场强度通量。面的电场
6、强度通量。解:解:对立方体的各个顶点标上符号,对立方体的各个顶点标上符号,如右图所示,如右图所示,(1 1)对于)对于ABOC平面,平面,x = 012EE iE j2Sa i = =恒矢量恒矢量所以,所以,ABOCE S212() ()E iE ja i 21E a (2 2)对于)对于DFGH平面,平面,x = a12()EEka iE j= =恒矢量恒矢量2Sa i所以,所以,DFGHE S212() ()Eka iE ja i231E aka5-15 5-15 如图所示,边长为如图所示,边长为a 的立方体,其表面分别平行于的立方体,其表面分别平行于xy、(3 3)对于)对于BGHO平面
7、,平面,12()EEkx iE jdSdSk 所以,所以,00BGHSE dS(4 4)对于)对于AFDC平面(类似于平面(类似于BGHO平面),平面),所以,所以,0AFDCSE dS12()EEkx iE jdSdSk(5 5)对于)对于ABGF平面,平面,12()EEkx iE jdSdSj所以,所以,ABGFSE dS12() ()SEkx iE jdSj22E a(6 6)对于)对于CDHO平面(类似于平面(类似于ABGF平面),平面),12()EEkx iE jdSdSj ABGFSE dS12() ()SEkx iE jdSj 22E a 所以,所以,因此,整个立方体表面的电场强
8、度通量为:因此,整个立方体表面的电场强度通量为:ABOCDFGHBGHOAFDCABGFCDHO 223221122()00()E aE akaE aE a 3ka5-17 5-17 设半径为设半径为R的球体内,其电荷为对称分布,电荷体密度的球体内,其电荷为对称分布,电荷体密度 为为0kr解解: :k为一常数;试用高斯定理求电场强度为一常数;试用高斯定理求电场强度0rRrRE与与r的函数关系。(你能用电场叠加原理的函数关系。(你能用电场叠加原理求解这个问题吗?)求解这个问题吗?)电场分布也是球对称的,同心球面电场分布也是球对称的,同心球面由于电荷分布具有球对称性,所以由于电荷分布具有球对称性,
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 大学物理 作业