城市大数据的生态模型及应用探讨.docx

上传人:王** 文档编号:1516039 上传时间:2024-08-05 格式:DOCX 页数:12 大小:109.70KB
下载 相关 举报
城市大数据的生态模型及应用探讨.docx_第1页
第1页 / 共12页
城市大数据的生态模型及应用探讨.docx_第2页
第2页 / 共12页
城市大数据的生态模型及应用探讨.docx_第3页
第3页 / 共12页
城市大数据的生态模型及应用探讨.docx_第4页
第4页 / 共12页
城市大数据的生态模型及应用探讨.docx_第5页
第5页 / 共12页
城市大数据的生态模型及应用探讨.docx_第6页
第6页 / 共12页
城市大数据的生态模型及应用探讨.docx_第7页
第7页 / 共12页
城市大数据的生态模型及应用探讨.docx_第8页
第8页 / 共12页
城市大数据的生态模型及应用探讨.docx_第9页
第9页 / 共12页
城市大数据的生态模型及应用探讨.docx_第10页
第10页 / 共12页
亲,该文档总共12页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《城市大数据的生态模型及应用探讨.docx》由会员分享,可在线阅读,更多相关《城市大数据的生态模型及应用探讨.docx(12页珍藏版)》请在优知文库上搜索。

1、我要:从提出一个生态模型开始,附述了也立一个可持续的城市大数据生态所需安的关过角色以及地方政府在演进这些角色中所能发挥的作用.接着,给出了一个实际案例作为这个模型的参考实现,并分享了案例中企业在配合政府建立大数据生志过程中所开展的一系列工作以及工作中总结的经脸和教训,脸让这个模鞭在实践中的可行性,呆后,给出了一个具体的大数据应用案例:通过大数据手段来帮助政府优化行政审批流程,使得优化后的流程对市民更有利,从中一瓶未来政府通过大数据进一步精细化社会管理的潜力.关键词;大数据;产业模型:社会治理;社会服务:可信分析1引言中国经过改革开放以来30多年的发展,城市化步伐不断加快.每年有1500万人口进

2、入城市,城图1所示.到2025年,中国将会有近三分之二的人口居住在城市,已羟进入了一个城市社会。与此同时,城市人口的增加带来的交通拥堵、环境污染、资源过度消耗、各类突发事件增加等社会矛宙日益突出,各种“城市通病”与日俱地,城市管理难度加大,这对城巾管理者的管理能力和极务水平提出/考5金.城市要保持可持续发展越来越受到各种因素的制约,需要转变方式、调整结构、适应日益增长的人民生活方式、不断解决突发性事件等问璃。人们在探索中意识到,智感城市是探治“城市病”的最隹良药.H三A”MWiH,ttAQMM,*AtfweKnAeweAnttKt图12O-2O1S年全国城镇人II数情况为了规范和推动智.蓝城市

3、的健康发展,住房和城乡建i殳部于2012年12/15日正式发布了“关于开展国家智慈城市试点工作的通知”,并印发了名国家智您城市试点通行管理办法和国家哲皴城市(区、钺)试点指标体系(试行)两个文件,正式启动了全国智想城市建设拓湖.到2015年公布的第三批试点名单,共计289个大小城市加入试点城市范附.住房和城乡建设部智基城市试点城市分布情况见表1.表1住房和城乡建设部智态城市试点城市分布情况试点城B第一批/个第二批个第三批/个合计/个省会城F55010JtiEH303637103县委方183033S1.区、斫区34272485多慎35210合计9010396289在轮接一轮的智态城市建设过程中,

4、大数据技术在城市建设的应用逐渐成为智魅城市建设的热点之一.通讯股份有限公司(以卜.简称通讯)把“以大数据应用为中心”的钟慈城市建设称为“智慈城市2.0,从而与之前“以建设业务系统为中心的智桂城市建设区分开.2城市大数据生态模型2.1 城市大数据在长期的城市建设与运营过程中,政府积累了大量的数据,如经济、民生、交通、旅游、医疗、安全等各行各业的数据。同时也枳累了大量的业务系统.以重庆市为例,包括51个部门,平均每个部门有S6个系统,整个政府有近300个系统在运行,如图2所示.图2亚庆市应用系统按建设汲别分类这些系统包含的数据涉及了城市的方方面面,其中维微的价值酶脩有效的手段进行挖妲与发现与互联网

5、公F所楣行的大数据不同.城市大数据具有自身的特点.见表2.我2城市大数据与互联网大数据的对比erfeM-rBc夫cttthctJ+uwotf多,型37)JtKFr灾:务3y3r-rZRSWCWtoCrty)mHKN*3MtrjTi.wMix三jreefiirR*2SM三*rx玄电子*jfc-re城市大数据与互联网大数据虽然各有不同,但可以互相补充,从而共同发挥更大的羟济效益和社会效益,2.2 人数据生态大数据的潜在经济价值催生了大数据的交易.自2015年4月15H全国首家大数据交易所一一员用大数据交易所正式挂牌交易起,先后有北京大数据交易所、上海大数据交易所、广州大数据交易所、陕西大数据交易所

6、和长江大数据交易所等机构启动,困绕大数据交易开始脖成一个生态系统,如图3所示。图3大数据交易生态系统模型围烧这个生态系统以外围的是工具厂商,这些厂商提供大数据采集、转换、存储、分析、可觇化等技术手段,Goog1.e,C1.oudera,Amazon等公司为大数据的技术推动做出了巨大贡献,同时火型的开源社区和产品逐渐成为大数据技术潮流的中望力增。处于生态中心位置的是大数据交易商.数据生产者为大数据交易商提供初级数据.后者通过数据标准化把初级数据转换成高级数据存储在基础设施运苕商处.基础设施运营启通过提供存储服务和计算服务获得市场地位,并从中衍生出PaaS运营商来M轻大数据交易商对技术的衢求。数据

7、挖掘者通过基础设施运营商提供的计算服务,结合领域知识对高级大数据进行挖掘.於得的。价的成果通过大数据交易商的交易平台提供给数据消般者.这样吸引更多的数据消费者源源不断地想入交易平台,提出更多的向阳并支付获得的满意答案,由此衍生出大数据咨询商来引杼大数据消费者更好地消费.数据消费者的支付逋过大数据交易商的分成平台,使褥数据生产者也获得相应的回报.这样整个生态就能够自生自长,实现良性循环*在真实世界里,一个企业可能栽有这个生态中的一部分、一个或多个角色,或者只专注与某个细分领域,“中关村大数据产业联盟”就活动在“咨泡”这个细分领域。从大数据交易生态系统也可以看出,有些领域如“数据标准化二多数有识之

8、士觉得很重要,但标准化并没彳f先行发展起来.究其原因就在于标准化其实是一个用部问避而非全埼问题.另外,这个产业模型让数据本身不需要发生大规模移动或复制,避免了数据安全、个人因龙、产权归属、初娘或高级数据定价等更杂的社会问胞和商业伦理同题,为持续进行交易提供理论依据.2.3 政府与数据交易商在大数据交易这个生态系统电形成初始的生态平衡是非常关键的,在全国此起彼伏的智.M城市建设以及交易所设立的浪潮中,政府有天然的优势来孵化数据交易商角色,具体原因如下.(1)政府是岐大的数据生成者如前所述,城市大数据联本部在政府手中,另一小部分在党政机关或步业单位手中,另外.随箭身憩城市系统的建设,政府手中的人数

9、据会越来越完善,越来越动态。(2)政府是最大的数据消费者我国的社会治理模式是“大政府、小社会”的模式,要求政府对国计民生方方面面做好保障与服务工作,这些工作的顺利开展都离开不科学决策,离不开数据的支摊.随着大数据价值的不断发现,政府治理的效率也将不断完善。(3)政府是城市公共设施的提供者政忖也将持续为每个城市的健康运行提供必要的基础设施,如交通、水利、学校、医院、水电煤气等。而信息葩础设施正在成为城市越来越正要的联础设施之一.到年上半年,全国共规划建设数据中心个,口投入使用个,总用地约万平方米,总机房面枳约万平方米.可见,在大数据生态的5个核心角色中.政府已经身兼3个角色.另一方面,社会费本在

10、目前的产业环境下承担大数据交易商用色仍有很多挑A1.大数据交易的法律法规、信息安全标准等宏观政策还不完善,导致各种市场主体对舂与大数据交易持观望态度。大数据交易还没有看得见的成熟的商用模式,能否在欣期的投资周期里获得投资合理回报是一个很大的问Sfi.由于大数据交易对象的高度技术化,如何吸引大规模的用户,认同交易物彳j所俏,衢要强大的信用支撑来鼓励各种用户先行会试,在大数据产业初期,通过政忖投资.其他社会资本参与成立数据交易商是一个比较现实的选择.政椅可以在实践过程中打通产业各个环节,迅速完成法律法规建议,通过PPP(PUbIprivate-PartnerShip,公私合作)模式、政府采购服务以

11、及财政补贴的方式来为新兴产业提供资本和信用保if。3实践案例通讯股份有限公司和市政府共建智慧城市是大数据生态系统产业模型的一个实践案例.其中,软创科技股份有限公司作为数据挖掘者多与了市城市大数据的合作开发;市政府承担数据提供者和数据游的者的角色:市与通讯合作组建的()智姒产业有限公司承担了交奶商和基础设施运营商的角色.合作开发过程主要困绕“基础设距、技术架构获取数据、分析列表、分析人才、分析过程和决策应用”7个方面展开.3.1 法础设施在目前的技术条件下,获得城市大数据运营所需的基础设施其技术困难不大.以市为例.从动土开工到大数据中心投入使用.整个工期不到一年,总体成本对于一个城市而言不高.也

12、可以采取租赁互联网公司数据中心的方式,但考虑数据安全、运维成本、区位优势等囚素后,城市自建大数据中心仍然是主流选择e3.2 技术架构满足城市大数据开发需要的技术平台也不难搭建.以隹者研咒团队的经验.这个平台应该包括大数据采集器、数据中心、主数据管理、大数据分析器、大数据眼分涔、可视化服务器、大数据客户端7个部分,技术才算是比较完整的,如图4所示.图4满足城市大数据开发所需要的技术平台架构大数据采能器能城实现海信数据的收集,不管是结构化数据还是非结构化数据,文本、语言、觇频都健实现数据的聚集、清洗、整合、利换和装载,这炖数据最终存储在数据中心。数据中心从软件与怏件层面实现对海量数据的存储和访问.

13、同时注重能耗与安全.主教据管理则实现数据的编目、管理、授权、共9和交换.淮护城市数据模型,形成五大库(UP人口玲、法人库、地理信息玲、建筑物库和宏观经济库),并维护各自的过程库、业务数据库和主题应用库等.大数据分析器根据何胞、目标设计出分析模型及数据处理、训练、检脸过程.将设计好的蓝图交给大数据服务器计完.大数据底务器管埋所有的计算资源,实现分布式计算、海此数据即时处理,可视化限务器把大数据分析结果转换成图形,宜观地告诉客户所拥行数据的形态和关键特征,这也图形最终通过大数据客户擢向用户早.现。大数据客户端包括如下3类。数据服务平台:面向公众,以网站的形式向公众提供大数据开放服务,鼓励大众参与城

14、市服务。决策服务平台:面向各报领导,通过图表方式呈现经济、民生等数据的分析结果。管理服务平台:面向政府工作人员,通过缩放地图、拉动时间线来查看其感兴邂的数据.如街道主任可以限定自己所处街道查看人口出生率,而同级教育主任可能更关心扫盲率.3.3 获取数据在城市大数据开发过程中,真正的困难是从获取数据开始的,从产业模型角度看,属于培百大数据生产者的工作.首先,政府部门开发自己的数据意愿很低.这其中的原因非常多,包括政策上的顾虑、部门立场的考虑以及公开数据可能带来的种种问题和时变化的担忧,在这些因素里,数据安全是一个绕不开的话题.2015年刑法修正案在信息安全领域明确扩大了犯罪主体的适用公国.使得部

15、门主要领导和相关负责人都不愿遨承担因数据泄漏风险引发的连带责任。为了让政府部门的数据能够更有效地共享,除J技术上不断提高,加大数据保护的力度之外,在法律、制吱上进一步细化和松绑己成为不可缺失的一环。商业上的创新也比较为键,比如考虑一种保险制度来解除大数据共享过程中所引发的安全责任风险。其次,数据预处理(H1.J把低级数据加工成高级数据)的工作Ift非常大.一方向,政忖的系统建设过于分散,都是大*的小厂商开发出来的,数据规范性一开始就不高:另一方面,这些政府系统一开始没有考虑向大数据分析优化,缺失数据严重,而不同系统之间的数据一致性更加没有保障,这就要求厂商花出大量的时间进行数据交JW补缺,通过不同的数据源进行相互验证来获得更加完整、准确的数据集.在这个预处理过程中本身也有一些大数据技术在其中应用,比如通过数据分析来判断哪些数据集准确性更高,从而替换其他重虹数据.另外,数据格式五花八门,有根原始的表格、文本数据,也有纸侦数据,需要通过。CR扫描识别入库.

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 论文 > 管理论文

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!