《均匀介质圆柱对平面波的散射(Mie级数).docx》由会员分享,可在线阅读,更多相关《均匀介质圆柱对平面波的散射(Mie级数).docx(4页珍藏版)》请在优知文库上搜索。
1、均匀介质圆柱对平面波的散射1.TM极化假设TM极化均匀平面波垂直入射半径为a的无限长均匀介质圆柱,相对介电常数为,相对磁导率为,波的传播方向为+x,入射电场和入射磁场用柱面波展开,分别表示为En=6/。加=A/如叩=rZ(Ap)e(1)H切山小kF迫厂匚加卜jsjP;jN(2)散射场朝外传播,因此,散射电场和磁场用柱第二类Hankel函数展开,分别表示如下ZT=FHer含这碎(M)(4)透射场则由柱面基本波函数的线性组合表示,由于透射场在介质内部均为有限大,因此ODI71zAHzran=-bj(3)J(oPdj(6)根据介质表面的边界条件,切向电场和切向磁场连续,可以得到厂/“(kp)ej+4
2、碍(W=L-JnJ(AP+W=-M(.p)rI7(8)求解方程组,从而得到展开项的系数为二.八7-(AGO川一小。(妨()CfWnnJfAkQ富(-rfn(W)M叫后)t(9)h=j.W)wa(3T)(U)漕pn碎,()上(巾)碎(%)7(10)4:%L(ka)Jtl(AM)T7,(加)(4。)令M(M)”f)(%)-%/,(切)!叫将系数带入展开式,得到散射电场和磁场的表达式为EE=SEHM)(W”28(11)-=-aAlG4F(ARW”F/”pKjK(12)叫,等,”即对于远区散射场,kp8,p,则相应的电场和磁场为(14)c*cComputeTMzScatteringfromhomoge
3、nerouslosslessdielectricCircularcCylinderbyMieSeriesccaINPUT,real(8)cOnentry,a,specifiestheradiusofthecircularcylindercepsRINPUT,real(8)cOnentry,epsR,specifiestherelativepermittivityofcthehomogenerousdielectriccircularcylindercMuRINPUT,real(8)cOnentry,muRspecifiestherelativepermeabilityofcthehomogen
4、erousdielectriccircularcylindercfINPUT,real(8)cOnentry,fspecifiestheincidentfrequencycrINPUT,real(8)cOnentry,r,specifiesthedistancebetweentheobservationcpointandtheoriginofcoordinatescphINPUT,real(8)cOnentry,ph,specifiestheobservationanglecEzOUTPUT,complex(8)cOnexit,Ez,specifiesthezcomponentoftheele
5、ctriccscatteringfieldcHphoOUTPUT,complex(8)cOnexit,HphospecifiesthephocomponentofthemagneticcscatteringfieldcHphiOUTPUT,complex(8)cOnexit,HphispecifiesthephicomponentofthemagneticcscatteringfieldccProgrammedbyPandaBrewmasterc*subroutinedSca_TM_DIE_Cir_Cyl_Mie(a,epsR,muR,f,r,ph,Ez,Hpho,Hphi)c*本*impli
6、citnonec-InputParametersreal(8)a,epsRzmuR,f,r,phcomplex(8)Ez,Hpho,Hphic-ConstantNumbersreal(8)zparameter:pi=3.141592653589793real(8)zparameter:eps=8.854187817d-12real(8),parameter:m0=pi*4.d-7complex(8),parameter:cj=dcmplx(O.dOzl.d)c-TemporaryVariablesintegerk,nmaxreal(8)etaOzwavek,ka,krreal(8)etalzw
7、avekl,kalcomplex(8)COe1,coe2real(8)zallocatable,dimension(:):JnkaO,YnkaO,DJnkaO,Jnkr,Ynkrreal(8)zallocatable,dimension(:):Jnkal,YnkalzDJnkalcomplex(8)zallocatable,dimension(:):HnkaO,DHnkaO,HnkrzDHnkrcomplex(8),allocatable,dimension(:):Hnkal,DHnkalcomplex(8)zallocatable,dimension(:):aneta=dsqrt(mu/ep
8、s)wavek=2.dO*pi*f*dsqrt(mu*eps)ka=wavek*akr=wavek*retal=dsqrt(muR*mu/epsR/eps)wavekl=2.dO*pi*f*dsqrt(muR*mu*epsR*eps)kal=wavekl*anmax=kal+10.d0*kal*(l.d/3.dO)+1if(nmax=0)then!FiniteDistanceallocate(Jnkr(-1:nmax+1),Ynkr(-1:nmax+1),Hnkr(-1:nmax+l)zDHnkr(O:nma)calldBES(nmax+2,kr,Jnkr(O:nmax+1),Ynkr(O:nmax+1)Jnkr(-1)=-Jnkr(I)Ynkr(-1)=-Ynkr(I)Hnkr(-1:nmax+1)=dcmplx(Jnkr(-1:nmax+l)z-Ynkr(-1:nmax+1)Ez=an0)*Hnkr(O)dok=I7nmaxEz=Ez+cj*(-k)*an(k)*Hnkr(k)*cdexp(dcmplx(O.dO,k*ph)Ez=Ez+cj*k*an(k)*Hnkr(k)*cdexp(dcmplO.dOz-k*ph)enddoHpho=O.ddok=I7nmax