螺栓非正常使用断裂的原因.docx

上传人:王** 文档编号:1375070 上传时间:2024-06-23 格式:DOCX 页数:11 大小:17.53KB
下载 相关 举报
螺栓非正常使用断裂的原因.docx_第1页
第1页 / 共11页
螺栓非正常使用断裂的原因.docx_第2页
第2页 / 共11页
螺栓非正常使用断裂的原因.docx_第3页
第3页 / 共11页
螺栓非正常使用断裂的原因.docx_第4页
第4页 / 共11页
螺栓非正常使用断裂的原因.docx_第5页
第5页 / 共11页
螺栓非正常使用断裂的原因.docx_第6页
第6页 / 共11页
螺栓非正常使用断裂的原因.docx_第7页
第7页 / 共11页
螺栓非正常使用断裂的原因.docx_第8页
第8页 / 共11页
螺栓非正常使用断裂的原因.docx_第9页
第9页 / 共11页
螺栓非正常使用断裂的原因.docx_第10页
第10页 / 共11页
亲,该文档总共11页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

《螺栓非正常使用断裂的原因.docx》由会员分享,可在线阅读,更多相关《螺栓非正常使用断裂的原因.docx(11页珍藏版)》请在优知文库上搜索。

1、7系铝合金的发展历史在20世纪20年代,德国的科学家研制出Al-Zn-Mg系合金,由于该合金抗应力腐蚀性能太差,并未得到产业内应用。在20世纪30年代初一直到二战结束期间,各个国家在研究中发现,Cu元素可以提高铝合金的抗应力腐蚀性能。在此,开发了大量Al-Zn-Mg系合金,因此忽视了对Al-Zn-Mg系合金的研究。德、美、苏、法等国在Al-Zn-Mg-CU系合金基础上成功地开发了7075、B93和D683等合金。目前正广泛应用在航空航天事业上,但是强度、韧性、抗应力腐蚀性能三者之间未能实现最佳组合状态。20世纪50年代德国科学家公布了具有优良焊接性能的合金AIZnMgI和AIZnMg2,引起了

2、人们对Al-Zn-Mg系合金的重视。在此段时间,美国学者在AIZnMgI合金的基础上,加入了Zr.Mn.Cr等元素,研制出了7004和7005合金,具有优良焊接性和抗应力腐蚀性能,广泛应用于焊接行业。唯一不足的是,工艺性能较差。日本科学家尝试降低合金中Mg含量,提高Zn/Mg值,研制出了ZK60和ZK61合金,使合金的焊接性和工艺性能提高,但是降低了很大的强度。同时期内,前苏联也研制出了1915、1933合金,强度也是偏低。为了克服强度低的缺点,20世纪70年代又研制出7020合金,具有高强度,焊接性好的性能。以后,人们把注意力集中在了Al-Zn-Mg系铝合金上。20世纪80年代初,美国科学家

3、先后在7075合金的基础上,为了解决实际生产中抗应力腐蚀敏感性较高的问题,以及满足某些特殊需要,调整了部分合金元素的含量,发展了许多新型合金。相比之下,国内对7系铝合金的研究起步较晚,在20实际80年代,由东北和北京研究院研制Al-Zn-Mg系铝合金。目前主要有7050、7075、7175等合金产品。20世纪90年代中期,北京航空材料研究所采用常规半连续铸造法试制出7A55超高强铝合金,近几年又研制出强度更高的7A60合金。而在AI2Zn2Mg系铝合金的研制上,国内基本都是仿制,很少自行开发。铝合金疲劳的分类疲劳的定义疲劳断裂是由于交变载荷、应力下引起的延时断裂,其断裂应力水平往往低于材料的抗

4、拉强度Ob,有时甚至低于屈服强度5。一般情况下,疲劳破坏不发生明显的塑性变形,其变形主要是脆性断裂,是一种没有预兆、十分危险的破坏形式,难以检测、预防。铝合金的疲劳,按疲劳破坏原因可分为三类:热疲劳、腐蚀疲劳和机械疲劳。热疲劳铝合金的热疲劳是在交变应力和热应力共同作用下产生的疲劳破坏。外部约束和内部约束是产生热疲劳的两个必要条件,外部约束即阻碍材料自由膨胀,内部约束即产生温度梯度,使材料膨胀,但由于约束从而产生热应力与热应变,经过一定的循环次数,导致裂纹的萌生、扩展。张文孝等研究了1.D8铝合金的同相和异相热疲劳特性,应用弹塑性断裂力学方法对不同状态下热疲劳寿命进行了探讨。腐蚀疲劳长期在化工行

5、业使用或者海水中使用的金属材料,处于腐蚀的环境中,此外还承受交变载荷作用,与正常环境下的金属材料相比,腐蚀性环境和交变载荷同时作用,会显著降低材料的疲劳性能,从而产生构件的破坏,以至于最终断裂。宫玉辉等研究了不同腐蚀环境对7475-T7351铝合金疲劳性能及裂纹扩展速率的影响,发现腐蚀环境对裂纹扩展有较明显的加速作用,但不同环境腐蚀和不同温度对材料的低周疲劳性能影响不大。王成等将不同浓度硅酸钠添加到铝合金中,发现其可以抑制铝合金的点蚀、减少裂纹源,提高铝合金在氯化钠溶液中抗点蚀的能力及腐蚀疲劳寿命,但对铝合金的腐蚀疲劳裂纹的扩展无法抑制。机械疲劳机械零部件在外加应力或者应变作用下将会产生机械疲

6、劳,经长时间工作后,即使所受应力小于材料屈服点,仍然会产生裂纹,或者产生断裂。在循环应力水平较低时,弹性应变起主导作用,此时疲劳寿命较长,称之为高周疲劳,也称应力疲劳;在循环应力水平较高时,塑性应变起主导作用,此时疲劳寿命较短,称之为低周疲劳,也称塑性疲劳。李睿等对2024-T3铝合金孔板进行了高低周复合疲劳试验,研究发现随着高低周循环次数增大,复合疲劳寿命有显著的降低,并建立了高低周循环次数和应力幅比与高低周复合疲劳寿命之间的关系式,但其只考虑了载荷循环次数对疲劳的影响,没有全面综合其他影响疲劳寿命的因素。疲劳破坏过程及机理金属设备疲劳过程的开始,即疲劳裂纹的萌生称为疲劳源。疲劳源是材料微观

7、组织永久损伤的核心,当裂纹开始萌生后,逐渐长大并与其它裂纹合并,然后形成肉眼可见的宏观裂纹,称为主裂纹,此时裂纹萌生阶段结束。之后,进入裂纹扩展阶段,首先开始稳定扩展,裂纹达到临街尺寸后,随着进一步的交变应力、应变作用下,金属材料无法承受,裂纹开始突然间失稳,材料瞬间产生破坏,发生断裂。简而言之,疲劳破坏过程分为:裂纹萌生,裂纹扩展和失稳断裂三个阶段。每个阶段具体如下:裂纹萌生:由于应力集中,疲劳裂纹首先起源于材料内部微观结构最薄弱的额区域,或者应力较高的区域。裂纹萌生初期,长度小于0.05mm0.1mm,此裂纹称为疲劳裂纹核。随着疲劳进行,微观裂纹逐渐发展成宏观裂纹,肉眼可见。铝合金材料疲劳

8、裂纹萌生主要部位有滑移带、晶界、相界面三种。裂纹扩展:疲劳裂纹萌生结束后,将进入裂纹扩展阶段。此阶段又分为两个部分,首先是裂纹沿主滑移系,以纯剪切方式向内扩展,扩展速率极低,其延伸范围在几个晶粒长度之间。其次,在晶界的阻碍作用下,使扩展方向逐渐垂直于主应力即拉应力方向,并形成疲劳条纹或称为疲劳辉纹,一条辉纹就是一次循环的结果。第一阶段的裂纹扩展速度慢,长度小,所以该阶段的形貌特征并不明显。而第二阶段的穿晶扩展,其扩展速率随循环周次增加而增大,扩展程度也较为明显,多数材料的第二阶段可用电子显微镜观察到疲劳条纹,有些甚至能用肉眼观察到。不同材料的疲劳条纹各不相同,形貌也是种类繁多,有与裂纹扩展方向

9、垂直略呈弯曲并相互行的沟槽状花样,有断口比较平滑而且分布有贝纹或海滩花样,有时则呈现以源区为中心的放射线,疲劳条纹是疲劳断口最有代表性的特征。一般情况下,疲劳裂纹扩展区在整个断口所占面积较大。疲劳裂纹扩展阶段是材料整个疲劳寿命的主要组成部分。不同铝合金材料裂纹扩展的两个阶段也有不同的寿命,在材料表面光滑试件中,第一阶段的扩展时间占整个疲劳寿命的绝大部分;而在有缺口的试件中,第一阶段几乎可以忽略,第二阶段的传播是整个疲劳裂纹扩展的寿命。裂纹失稳:疲劳裂纹扩展到一定长度即临界长度时,材料表面不足以承受外部载荷,在下一次加载中将发生失稳扩展,导致快速断裂。这一阶段是构件寿命的最后阶段,失稳扩展到断裂

10、这一短暂过程对于构件寿命的贡献是可以忽略的,裂纹最后失稳快速扩展所形成的断口区域称为瞬断区,材料性质不同,断口相貌也截然不同。疲劳寿命的影响因素材料内因疲劳特性与合金成分有关,成分决定了合金组织以及强化效果;同时,合金的显微组织也冶金过程中的缺陷也对合金疲劳有很大程度的影响,裂纹源可能由夹杂物,晶粒大小,晶粒偏析,晶界疏松引起。张涛等研究了Al-Si系铸造铝合金疲劳性能,发现铸造过程难以避免的孔洞及Si颗粒大小、形貌均对铸造铝合金材料疲劳裂纹的萌生有重要影响;Zhai通过对铝锂合金疲劳性能各向异性的研究发现,在轧制方向强度低,疲劳性能也最差,疲劳裂纹多沿方向萌生,而在厚度方向强度较高,鲜见裂纹

11、的萌生,疲劳性能也自然最佳;时效处理是改善铝合金性能的有效途径,由于其改变了合金微观组织结构,自然也对合金疲劳特性影响颇大;Sharma等通过对不同时效处理后的AA2219铝合金进行疲劳试验,结果表明自然时效及欠时效处理后的合金疲劳性能较好,鲜见疲劳裂纹的萌生;而峰时效和过时效处理后的合金,其多出萌生疲劳裂纹切裂纹扩展速率较高,疲劳性能不佳。构件状态合金的疲劳特性也跟表面粗糙度、材料尺寸、几何形状。表面凹凸。壁厚均匀性有关。Suraratchai等对影响铝合金疲劳寿命的因素进行了研究,其对合金表面粗糙度进行了有限元分析,结果表明由于材料表面凹凸不平而引起的应力集中,是损害疲劳寿命的源头俏骥研究

12、了7475铝合金板材的疲劳性能,在疲劳试验中表现最好的T-1.平面上的试件进行了喷丸处理,结果发现,经过喷丸处理之后,并不是一定提高了试件的疲劳强度,在喷丸处理的过程中,在引入残余压应力的同时,也破坏了试件表面的平整度。残余压应力将提高试件的疲劳强度,而过高的粗糙度,将使试件表面很容易成为裂纹源。工作条件载荷的大小和加载方式及加载频率是合金材料疲劳寿命的决定性因素。刘岗等研究了2E12铝合金在不同应力水平下的疲劳性能及疲劳裂纹扩展速率,结果表明缺口的存在降低了疲劳强度,随着应力比的提高,疲劳强度也大幅度改善;蹇海根等通过金相、电镜扫描显微技术对比了不同应力下铝合金的疲劳断口显微组织,发现疲劳裂

13、纹萌生处与材料表面的距离随加载应力升高而减小,加载应力越高,疲劳源区面积越小,裂纹扩展区的疲劳辉纹间距越大,且随着应力的增大,断口上疲劳裂纹扩展区的面积减小,瞬断区的面积增大。同时材料寿命也受工作环境如温度、周边介质等因素影响。Gasqueres等通过对AA2024铝合金疲劳裂纹扩展规律的研究发现,正常室温下,疲劳裂纹扩展进入第二阶段后,将环境温度调至223K,裂纹长大又转为第一阶段的扩展规律,而且此时裂纹的扩展受到温度和气压的共同影响。铝合金疲劳特性的影响因素很多,从单一或几个因素的考虑对铝合金材料疲劳寿命进行研究并不准确,建立相应的科学模型,综合考虑所有因素从而精确地预测材料的疲劳寿命是需

14、要进一步深入研究的重点。具有效率高、成本低、工艺简单等优点,适用于多种颗粒以及多种基体,此方法总体上具有一定竞争力。疲劳寿命的估算方法因材料疲劳多数是不可预测,不可检测到的塑性断裂,因此造成的损失不可估计,所以材料疲劳寿命的估计一直以来是重要研究问题。几百年内,各国科学家一直在探索、研究。1945年Miner在对疲劳累积损伤问题进行大量试验研究的基础上,将Palmgren于1924年提出的线性累积损伤理论公式化,形成了Palmgren-Miner线性累积损伤法则;1963年PariS在断裂力学方法的基础上,提出了表达裂纹扩展规律的PariS公式,此后又发展有损伤容限设计;1971年Wetzel

15、在Manson-Coffin研究的基础上,提出了根据应力-应变分析估算疲劳寿命的方法局部应力-应变法,还有许多出色的研究人员提出的。诸多计算方法,以下简单介绍现今在疲劳寿命估算方面三种主要运用的方法。累积损伤理论Miner理论是典型的线性累计损伤理论,Miner公式为:其中n表示不同大小的载荷,N表示不同载荷单独作用下出现裂纹的破坏次数,N表示总的循环次数,即疲劳寿命。当循环周期内载荷对构件所造成的损伤累计加至1时,构件即发生破坏;其简单直观,在工程上被广泛应用,并由此衍生了最早的抗疲劳设计方法一一名义应力法,其以材料或零件的S-N曲线描述材料的疲劳特性,根据应力集中系数和名义应力,结合线性累

16、计损伤理论进行疲劳寿命计算。但名义应力法以材料力学和弹性力学为基础,不考虑疲劳过程中的塑性变形,对发生高应力局部屈服的疲劳破坏并不适用。局部应力应变法局部应力-应变曲线法认为构件的整体疲劳性能,取决于最危险区域的局部应力应变状态。其先实验测定应力、应变和疲劳断裂寿命的曲线和实验数据,接下来结合NeUber公式进行缺口时间在随机加载下的局部应力-应变响应分析,进行每一次循环的损伤计算,最后按线性累积模型求得疲劳损伤量,估算出寿命。修正后的NeUber公式为:其中AS、xAE分别为名义应力幅值、局部应力幅值和局部应变幅值。缺口疲劳系数是一个静态参数,无法精确求解。名义应力法没有考虑疲劳过程中的塑性变形,局部应力-应变法弥补了这一缺陷,只要掌握材料试样的循环应变、应力与寿命关系的曲线等少量实验数据,通过对应力集中部位的应力应变分析后,就可以预计构件的疲劳寿命。但其运用的Neuber公式是一个经验公式,人为误差较大,而近年来兴起

展开阅读全文
相关资源
猜你喜欢
相关搜索

当前位置:首页 > 论文 > 管理论文

copyright@ 2008-2023 yzwku网站版权所有

经营许可证编号:宁ICP备2022001189号-2

本站为文档C2C交易模式,即用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。装配图网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知装配图网,我们立即给予删除!